2,260 research outputs found

    MoS2 and MoS2 Nanocomposites for Adsorption and Photodegradation of Water Pollutants: A Review

    Get PDF
    The need for fresh and conveniently treated water has become a major concern in recent years. Molybdenum disulfide (MoS2) nanomaterials are attracting attention in various fields, such as energy, hydrogen production, and water decontamination. This review provides an overview of the recent developments in MoS2-based nanomaterials for water treatment via adsorption and photodegradation. Primary attention is given to the structure, properties, and major methods for the synthesis and modification of MoS2, aiming for efficient water-contaminant removal. The combination of MoS2 with other components results in nanocomposites that can be separated easily or that present enhanced adsorptive and photocatalytic properties. The performance of these materials in the adsorption of heavy metal ions and organic contaminants, such as dyes and drugs, is reviewed. The review also summarizes current progress in the photocatalytic degradation of various water pollutants, using MoS2-based nanomaterials under UV-VIS light irradiation. MoS2-based materials showed good activity after several reuse cycles and in real water scenarios. Regarding the ecotoxicity of the MoS2, the number of studies is still limited, and more work is needed to effectively evaluate the risks of using this nanomaterial in water treatment.publishe

    Drug Delivery Systems and Flavonoids: Current Knowledge in Melanoma Treatment and Future Perspectives

    Get PDF
    Melanoma is an aggressive form of skin cancer with a high prevalence in the population. An early diagnosis is crucial to cure this disease. Still, when this is not possible, combining potent pharmacological agents and effective drug delivery systems is essential to achieve optimal treatment and improve patients' quality of life. Nanotechnology application in biomedical sciences to encapsulate anticancer drugs, including flavonoids, in order to enhance therapeutic efficacy has attracted particular interest. Flavonoids have shown effectiveness against various types of cancers including in melanoma, but they show low aqueous solubility, low stability and very poor oral bioavailability. The utilization of novel drug delivery systems could increase flavonoid bioavailability, thereby potentiating its antitumor effects in melanoma. This review summarizes the potential of different flavonoids in melanoma treatment and the several nanosystems used to improve their biological activity, considering published information that reported improved biological and pharmacological properties of encapsulated flavonoids.publishe

    Towards efficient ciprofloxacin adsorption using magnetic hybrid nanoparticles prepared with κ-, ι-, and λ-carrageenan

    Get PDF
    The efficient removal of the antibiotic ciprofloxacin (CIP) from aqueous samples using magnetic nanosorbents prepared using three sulfated polysaccharides, κ-, ι- and λ-carrageenan and an alkoxysilane agent containing a reactive epoxide ring is described. The prepared nanosorbents were characterized in detail using FTIR spectroscopy, solid-state 29Si and 13C NMR spectroscopy and elemental microanalysis. The synthesis method was more effective for incorporating higher amounts of κ-carrageenan in the siliceous shells. Although being less sulfated, κ-carrageenan is cheaper than the other carrageenan tested. The CIP adsorption was a cooperative process, well described by the Dubinin–Radushkevich isotherm, with maximum adsorption capacities of 878, 969 and 865 mg/g for κ-, ι- and λ-carrageenan sorbents, respectively. Overall, the produced magnetic nanosorbents are among the best magnetic systems with high adsorptive efficiency for CIP. It is suggested that protonated CIP molecules are exchanged with ester sulfate counterions of carrageenan at the particles’ surface as the main pathway for CIP adsorption. The adsorption process was exothermic and entropically favorable for the three sorbents. However, at 298 K, the adsorption was spontaneous for κ-carrageenan-based sorbents and non-spontaneous for ι- and λ-carrageenan particles. The magnetic sorbents could be reused and maintained their ability towards CIP removal up to four cycles. The removal efficiency in wastewater was enhanced with the sorbent dose. Graphical abstract: [Figure not available: see fulltext.] Magnetic carrageenan nanosorbents were prepared using three carrageenan polysaccharides (κ-, ι-, and λ-carrageenan). The resulting magnetic particles removed the antibiotic ciprofloxacin efficiently from ultra-pure water and wastewater samples. Magnetic features enabled the fast magnetic separation of the nanosorbents from water.publishe

    An integrated approach for trace detection of pollutants in water using polyelectrolyte functionalized magneto-plasmonic nanosorbents

    Get PDF
    Resistance of pathogenic micro-organisms to conventional antibiotics is an essential issue for public health. The presence of such pharmaceuticals in aquatic ecosystems has been of major concern for which remediation and ultra-sensitive monitoring methods have been proposed. A less explored strategy involves the application of multifunctional nanosorbents for the uptake and subsequent detection of vestigial contaminants. In this study, colloidal nanoparticles (NPs) of iron oxide and gold were encapsulated in multi-layers of a charged polyelectrolyte (PEI: polyethyleneimine), envisaging the effective capture of tetracycline (TC) and its subsequent detection by Surface Enhanced Raman Scattering (SERS). Adsorption studies were performed by varying operational parameters, such as the solution pH and contact time, in order to evaluate the performance of the nanosorbents for the uptake of TC from water. While the magnetic nanosorbents with an external PEI layer (Fe3O4@PEI and Fe3O4@PEI-Au@PEI particles) have shown better uptake efficiency for TC, these materials showed less SERS sensitivity than the Fe3O4@PEI- Au nanosorbents, whose SERS sensitivity for TC in water has reached the limit of detection of 10 nM. Thus, this study highlights the potential of such magneto-plasmonic nanosorbents as multi-functional platforms for targeting specific contaminants in water, by taking into consideration both functionalities investigated: the removal by adsorption and the SERS detection across the nanosorbents' surfaces.publishe

    In situ synthesis of magnetite nanoparticles in carrageenan gels

    Get PDF
    Magnetite nanoparticles have been successfully synthesized in the presence of carrageenan polysaccharides using an in situ coprecipitation method. Iron coordination to the sulfate groups of the polysaccharide was confirmed by FTIR. The polysaccharide type ( , é, or ì) and concentration have been varied and their effects on particle morphology and chemical stability of the resultant nanocomposite investigated. The presence of carrageenan induces the formation of smaller particles, compared to those formed in the absence of polymer, and their average size depends on the nature and concentration of the polysaccharide used. The chemical stability of magnetite nanoparticles toward oxidation was also seen to depend on biopolymer type with magnetite formed in é-carrageenan showing the highest chemical stability. A general tendency toward lower stability is observed as the polysaccharide concentration is increased. It is suggested that magnetite chemical stability in the carrageenan composites is determined by a fine balance between particle size and gel strength, the latter determining oxygen diffusion rates through the medium

    Colloidal dendritic nanostructures of gold and silver for SERS analysis of water pollutants

    Get PDF
    Surface-Enhanced Raman Scattering (SERS) using colloidal metal (Ag, Au) nanoparticles has been regarded as a powerful method for detecting organic pollutants at vestigial levels. Although less investi- gated, the controlled synthesis of binary nanostructures comprising two metals provides an alternative route to SERS platforms with tuned surface plasmon resonances. Here, we demonstrate that the use of dendrimers allows the formation of distinct combinations of Ag:Au nanostructures that are composed of smaller metal nanocrystals. Our research highlights the role of the dendrimer macromolecules as a multipurpose ligand in the generation of such hybrid nanostructure, including as a reducing agent, an effective long-term colloidal stabilizer and as a molecular glue for interconnecting the primary metal nanocrystals. Noteworthy, the dendrimer-based Ag:Au hybrid nanostructures are more SERS sensitive as compared to the corresponding colloidal blends or to the single-phase metals, as revealed by using molecular pesticides as analytes in spiked water samples. We suggest that the high SERS sensitivity of the hybrid nanostructures is due to interparticle plasmonic coupling occurring between the primary metal nanoparticle aggregates, whose arrangement is templated by the presence of the dendrimer macromolecules.publishe

    Dendrimer Stabilized Nanoalloys for Ink-Jet Printing of Surface-Enhanced Raman Scattering Substrates

    Get PDF
    Research on paper substrates prepared by inkjet deposition of metal nanoparticles for sensing applications has become a hot topic in recent years; however, the design of such substrates based on the deposition of alloy nanoparticles remains less explored. Herein, we report for the first time the inkjet printing of dendrimer-stabilized colloidal metal nanoalloys for the preparation of paper substrates for surface-enhanced Raman scattering (SERS) spectroscopy. To this end, nanoassemblies containing variable molar ratios of Au:Ag were prepared in the presence of poly(amidoamine) dendrimer (PAMAM), resulting in plasmonic properties that depend on the chemical composition of the final materials. The dendrimer-stabilized Au:Ag:PAMAM colloids exhibit high colloidal stability, making them suitable for the preparation of inks for long-term use in inkjet printing of paper substrates. Moreover, the pre-treatment of paper with a polystyrene (PS) aqueous emulsion resulted in hydrophobic substrates with improved SERS sensitivity, as illustrated in the analytical detection of tetramethylthiuram disulfide (thiram pesticide) dissolved in aqueous solutions. We suggest that the interactions established between the two polymers (PAMAM and PS) in an interface region over the cellulosic fibres, resulted in more exposed metallic surfaces for the adsorption of the analyte molecules. The resulting hydrophobic substrates show long-term plasmonic stability with high SERS signal retention for at least ninety days.publishe

    An integrated approach to assess the sublethal effects of colloidal gold nanorods in tadpoles of Xenopus laevis

    Get PDF
    Gold nanorods (AuNR) have been explored for many applications, including innovative nanomedicines, which also might contribute to its increase in the environment, namely due to inadequate disposable of wastes into aquatic environments. Early-life stages of amphibians are usually aquatic and sensitive to chemical contamination. Accordingly, this study aimed to determine the sublethal effects of CTAB functionalized AuNR on Xenopus laevis tadpoles. As such, tadpoles were exposed to serial concentrations of AuNR for 72 h. A reduction in the rate of feeding (EC50 = 4 μg.L-1), snout to vent growth (EC50 = 5 μg.L-1) and weight gain (EC50 = 6 μg.L-1), was observed for AuNR-exposed tadpoles. Also, tadpoles actively avoided concentrations ≥ 4 μg.L-1 of AuNR, after 12 h of exposure. At the biochemical level, AuNR caused impairments in antioxidant and nervous system related enzymes. Exposure to CTAB alone caused a high mortality. Results indicated that CTAB functionalized AuNR may induce several sublethal effects that may compromise the organism's fitness. Avoidance behavior (which corresponds to the disappearance of organisms, thus, similar to their death), observed at concentrations matching those inducing sublethal effects, suggest that it should be considered in the risk assessment for amphibians.publishe

    Effect of cerium-containing hydroxyapatite in bone repair in female rats with osteoporosis induced by ovariectomy

    Get PDF
    Osteoporosis is a public health problem, with bone loss being the main consequence. Hydroxyapatite (HA) has been largely used as a bioceramic to stimulate bone growth. In our work, a cerium-containing HA (Ce-HA) has been proposed and its effects on the antimicrobial and bone-inducing properties were investigated. The synthesis of the materials occurred by the suspension–precipitation method (SPM). The XRD (X-ray Diffraction) confirmed the crystalline phase, and the Rietveld refinement confirmed the crystallization of HA and Ce-HA in a hexagonal crystal structure in agreement with ICSD n◦ 26205. Characterizations by FT-IR (Fourier Transform Infrared Spectroscopy), XPS (X-ray Photoemission Spectroscopy), and FESEM-EDS (Field Emission Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy) confirmed the presence of cerium (Ce3+ and Ce4+ ). The antibacterial activity of Has was evaluated against Staphylococcus aureus 25,923 and Escherichia coli 25,922 strains, which revealed that the material has antimicrobial properties and the cytotoxicity assay indicated that Ce-containing HA was classified as non-toxic. The effects of Ce-HA on bone repair, after application in bone defects in the tibia of female rats with osteoporosis induced by ovariectomy (OVX), were evaluated. After 15 and 30 days of implantation, the samples were analyzed by Raman, histology and X-ray microtomography. The results showed that the animals that had the induced bone defects filled with the Ce-HA materials had more expressive bone neoformation than the control group.info:eu-repo/semantics/publishedVersio
    corecore