42 research outputs found

    \u3ci\u3eStaphylococcus aureus\u3c/i\u3e Hyaluronidase Is a CodY-Regulated Virulence Factor

    Get PDF
    Staphylococcus aureus is a Gram-positive pathogen that causes a diverse range of bacterial infections. Invasive S. aureus strains secrete an extensive arsenal of hemolysins, immunomodulators, and exoenzymes to cause disease. Our studies have focused on the secreted enzyme hyaluronidase (HysA), which cleaves the hyaluronic acid polymer at the β-1,4 glycosidic bond. In the study described in this report, we have investigated the regulation and contribution of this enzyme to S. aureus pathogenesis. Using the Nebraska Transposon Mutant Library (NTML), we identified eight insertions that modulate extracellular levels of HysA activity. Insertions in the sigB operon, as well as in genes encoding the global regulators SarA and CodY, significantly increased HysA protein levels and activity. By altering the availability of branched-chain amino acids, we further demonstrated CodY-dependent repression of HysA activity. Additionally, through mutation of the CodY binding box upstream of hysA, the repression of HysA production was lost, suggesting that CodY is a direct repressor of hysA expression. To determine whether HysA is a virulence factor, a ΔhysA mutant of a community-associated methicillin-resistant S. aureus (CA-MRSA) USA300 strain was constructed and found to be attenuated in a neutropenic, murine model of pulmonary infection. Mice infected with this mutant strain exhibited a 4-log-unit reduction in bacterial burden in their lungs, as well as reduced lung pathology and increased levels of pulmonary hyaluronic acid, compared to mice infected with the wild-type, parent strain. Taken together, these results indicate that S. aureus hyaluronidase is a CodY-regulated virulence factor

    Unique Structural Modifications Are Present in the Lipopolysaccharide from Colistin-Resistant Strains of \u3ci\u3eAcinetobacter baumannii\u3c/i\u3e

    Get PDF
    Acinetobacter baumannii is a nosocomial opportunistic pathogen that can cause severe infections, including hospital-acquired pneumonia, wound infections, and sepsis. Multidrug-resistant (MDR) strains are prevalent, further complicating patient treatment. Due to the increase in MDR strains, the cationic antimicrobial peptide colistin has been used to treat A. baumannii infections. Colistin-resistant strains of A. baumannii with alterations to the lipid A component of lipopolysaccharide (LPS) have been reported; specifically, the lipid A structure was shown to be hepta-acylated with a phosphoethanolamine (pEtN) modification present on one of the terminal phosphate residues. Using a tandem mass spectrometry platform, we provide definitive evidence that the lipid A isolated from colistin-resistant A. baumannii MAC204 LPS contains a novel structure corresponding to a diphosphoryl hepta-acylated lipid A structure with both pEtN and galactosamine (GalN) modifications. To correlate our structural studies with clinically relevant samples, we characterized colistin-susceptible and -resistant isolates obtained from patients. These results demonstrated that the clinical colistin-resistant isolate had the same pEtN and GalN modifications as those seen in the laboratory-adapted A. baumannii strain MAC204. In summary, this work has shown complete structure characterization including the accurate assignment of acylation, phosphorylation, and glycosylation of lipid A from A. baumannii, which are important for resistance to colistin

    A Porcine Wound Model of Acinetobacter baumannii Infection

    No full text

    Monoclonal Antibodies as an Antibacterial Approach Against Bacterial Pathogens

    No full text
    In the beginning of the 21st century, the frequency of antimicrobial resistance (AMR) has reached an apex, where even 4th and 5th generation antibiotics are becoming useless in clinical settings. In turn, patients are suffering from once-curable infections, with increases in morbidity and mortality. The root cause of many of these infections are the ESKAPEE pathogens (Enterococcus species, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species, and Escherichia coli), which thrive in the nosocomial environment and are the bacterial species that have seen the largest rise in the acquisition of antibiotic resistance genes. While traditional small-molecule development still dominates the antibacterial landscape for solutions to AMR, some researchers are now turning to biological approaches as potential game changers. Monoclonal antibodies (mAbs)—more specifically, human monoclonal antibodies (Hu-mAbs)—have been highly pursued in the anti-cancer, autoimmune, and antiviral fields with many success stories, but antibody development for bacterial infection is still just scratching the surface. The untapped potential for Hu-mAbs to be used as a prophylactic or therapeutic treatment for bacterial infection is exciting, as these biologics do not have the same toxicity hurdles of small molecules, could have less resistance as they often target virulence proteins rather than proteins required for survival, and are narrow spectrum (targeting just one pathogenic species), therefore avoiding the disruption of the microbiome. This mini-review will highlight the current antibacterial mAbs approved for patient use, the success stories for mAb development, and new Hu-mAb products in the antibacterial pipeline

    Reply to “The Dual Personality of Iron Chelators: Growth Inhibitors or Promoters?”

    Get PDF
    In their letter, Visca et al. have shown that P. aeruginosa can use deferiprone as an iron “carrier,” which in turn promotes bacterial growth in a low-iron M9 minimal medium (1). Since our initial publication, we have also observed that the presence of deferiprone (and some other iron chelators) at sub-MICs can promote the growth of clinical isolates of Acinetobacter baumannii in M9 minimal medium (our unpublished results). However, while these data are in agreement with the results published by de Léséleuc et al. with respect to deferiprone and A. baumannii (2), in our hands, they were also strain and chelator dependent. For example, we did not observe growth promotion with VK28 and A. baumannii (unpublished results). We agree with Visca et al. that the consequences of growth promoted by iron chelators at sub-MIC levels in minimal media need to be considered before clinical application. However, it is unclear how relevant these findings would be in vivo if a high-enough concentration of a chelator can be achieved (≥1× MIC). With systemic applications, these concentrations are not possible because of toxicity concerns, but for wound infections, a topical, nonsystemic application could be considered and was also highlighted in a recent review (3)

    Molecular Characterization of the Prototrophic Salmonella Mutants Defective for Intraepithelial Replication

    Get PDF
    Three MudJ prototrophs demonstrated that intracellular replication is a Salmonella virulence trait (K. Y. Leung and B. B. Finlay, Proc. Natl. Acad. Sci. USA, 88:11470-11474, 1991). mutS and mutH are disrupted in mutants 3-11 and 12-23, and ssaQ is disrupted in mutant 17-21. Further analysis revealed that loss of Salmonella pathogenicity island 2 function underlies the intracellular replication defect of 3-11 and 17-21

    The NleE/OspZ Family of Effector Proteins Is Required for Polymorphonuclear Transepithelial Migration, a Characteristic Shared by Enteropathogenic Escherichia coli and Shigella flexneri Infectionsâ–ż

    No full text
    Enteropathogenic Escherichia coli (EPEC) and Shigella flexneri are human host-specific pathogens that infect intestinal epithelial cells. However, each bacterial species employs a different infection strategy within this environmental niche. EPEC attaches to the apical surface of small intestine enterocytes, causing microvillus effacement and rearrangement of the host cell cytoskeleton beneath adherent bacteria. In contrast, S. flexneri invades the large intestine epithelium at the basolateral membrane, replicates, and spreads cell to cell. Both EPEC and S. flexneri rely on type three secretion systems (T3SS) to secrete effectors into host cells, and both pathogens recruit polymorphonuclear leukocytes (PMNs) from the submucosa to the lumen of the intestine. In this report, we compared the virulence functions of the EPEC T3SS effector NleE and the homologous Shigella protein Orf212. We discovered that Orf212 was secreted by the S. flexneri T3SS and renamed this protein OspZ. Infection of polarized T84 intestinal epithelial cells with an ospZ deletion mutant of S. flexneri resulted in reduced PMN transepithelial migration compared to infection by the wild type. An nleE deletion mutant of EPEC showed a similar reduction of PMN migration. The ability to induce PMN migration was restored in both mutants when either ospZ or nleE was expressed from a plasmid. An infection of T84 cells with the ΔospZ mutant resulted in reduced extracellular signal-related kinase phosphorylation and NF-κB activation compared to infection with the wild type. Therefore, we conclude that OspZ and NleE have similar roles in the upstream induction of host signaling pathways required for PMN transepithelial migration in Shigella and EPEC infections

    Small Molecule Downregulation of PmrAB Reverses Lipid A Modification and Breaks Colistin Resistance

    No full text
    Infections caused by multi-drug resistant bacteria, particularly Gram-negative bacteria, are an ever-increasing problem. While the development of new antibiotics remains one option in the fight against bacteria that have become resistant to currently available antibiotics, an attractive alternative is the development of adjuvant therapeutics that restore the efficacy of existing antibiotics. We report a small molecule adjuvant that suppresses colistin resistance in multidrug resistant <i>Acinetobacter baumannii</i> and <i>Klebsiella pneumoniae</i> by interfering with the expression of a two-component system. The compound downregulates the <i>pmrCAB</i> operon and reverses phosphoethanolamine modification of lipid A responsible for colistin resistance. Furthermore, colistin-susceptible and colistin-resistant bacteria do not evolve resistance to combination treatment. This represents the first definitive example of a compound that breaks antibiotic resistance by directly modulating two-component system activity
    corecore