394 research outputs found

    Radio Map Estimation: A Data-Driven Approach to Spectrum Cartography

    Full text link
    Radio maps characterize quantities of interest in radio communication environments, such as the received signal strength and channel attenuation, at every point of a geographical region. Radio map estimation typically entails interpolative inference based on spatially distributed measurements. In this tutorial article, after presenting some representative applications of radio maps, the most prominent radio map estimation methods are discussed. Starting from simple regression, the exposition gradually delves into more sophisticated algorithms, eventually touching upon state-of-the-art techniques. To gain insight into this versatile toolkit, illustrative toy examples will also be presented

    Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition

    Full text link
    A single-layer graphene is synthesized on Cu foil in the absence of H2 flow by plasma enhanced chemical vapor deposition (PECVD). In lieu of an explicit H2 flow, hydrogen species are produced during methane decomposition process into their active species (CHx<4), assisted by the plasma. Notably, the early stage of growth depends strongly on the plasma power. The resulting grain size (the nucleation density) has a maximum (minimum) at 50 W and saturates when the plasma power is higher than 120 W because hydrogen partial pressures are effectively tuned by a simple control of the plasma power. Raman spectroscopy and transport measurements show that decomposed methane alone can provide sufficient amount of hydrogen species for high-quality graphene synthesis by PECVD.Comment: 22 pages, 6 figure

    Plastid Phylogenomics of Dendroseris (Cichorieae; Asteraceae): Insights Into Structural Organization and Molecular Evolution of an Endemic Lineage From the Juan FernĂĄndez Islands

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Dendroseris D. Don comprises 11 species endemic to the Juan FernĂĄndez islands in Chile. They demonstrate spectacular and unusual growth forms of rosette trees with extremely variable morphology and occupy wide ecological ranges on the islands. These unique plants are now highly threatened with extinction with very small population sizes, typically consisting of 10 or fewer individuals in wild. Despite morphological and ecological divergence among species of Dendroseris, their monophyly has been supported in previous studies, but with little resolution among subgeneric groups. We assembled seven complete plastome sequences from seven species of Dendroseris, including representatives from three subgenera, and carried out comparative phylogenomic analyses. The plastomes are highly conserved in gene content and order, with size ranging from 152,199 to 152,619 bp and containing 130 genes (87 coding genes, 6 rRNA genes, and 37 tRNA genes). Plastid phylogenomic analyses based on both the complete plastome sequences and 81 concatenated coding genes only show Dendroseris nested within Sonchus sensu lato, and also that inter-subgeneric relationships are fully resolved. Subg. Phoenicoseris is resolved as sister to the remaining species of the genus and a sister relationship between the two subgenera Dendroseris and Rea. Ten mutation hotspots from LSC and SSC regions and variable SSRs are identified as potential chloroplast markers for future phylogenetic and phylogeographic studies of Sonchus and related groups.Basic Science Research Program through the National Research Foundation of Korea (NRF) (NRF-2019R1A2C2009841

    Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes

    Get PDF
    Electrochemical energy-storage devices have the potential to be clean and efficient, but their current cost and performance limit their use in numerous transportation and stationary applications. Many organic molecules are abundant, economical and electrochemically active; if selected correctly and rationally designed, these organic molecules offer a promising route to expand the applications of these energy-storage devices. In this study, polycyclic aromatic hydrocarbons are introduced within a functionalized few-walled carbon nanotube matrix to develop high-energy, high-power positive electrodes for pseudocapacitor applications. The reduction potential and capacity of various polycyclic aromatic hydrocarbons are correlated with their interaction with the functionalized few-walled carbon nanotube matrix, chemical configuration and electronic structure. These findings provide rational design criteria for nanostructured organic electrodes. When combined with lithium negative electrodes, these nanostructured organic electrodes exhibit energy densities of ~350 Wh kg[−1 over electrode] at power densities of ~10 kW kg[−1 over electrode] for over 10,000 cycles.National Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Award DMR-0819762

    Attenuating the EGFR-ERK-SOX9 axis promotes liver progenitor cell‐mediated liver regeneration in zebrafish

    Get PDF
    The liver is a highly regenerative organ, but its regenerative capacity is compromised in severe liver injury settings. In chronic liver diseases, the number of liver progenitor cells (LPCs) correlates proportionally to disease severity, implying that their inefficient differentiation into hepatocytes exacerbates the disease. Moreover, LPCs secrete pro‐inflammatory cytokines; thus, their prolonged presence worsens inflammation and induces fibrosis. Promoting LPC‐to‐hepatocyte differentiation in patients with advanced liver disease, for whom liver transplantation is currently the only therapeutic option, may be a feasible clinical approach since such promotion generates more functional hepatocytes and concomitantly reduces inflammation and fibrosis. Here, using zebrafish models of LPC‐mediated liver regeneration, we present a proof‐of‐principle of such therapeutics by demonstrating a role for the EGFR signaling pathway in differentiation of LPCs into hepatocytes. We found that suppression of EGFR signaling promoted LPC‐to‐hepatocyte differentiation via the MEK‐ERK‐SOX9 cascade. Pharmacological inhibition of EGFR or MEK/ERK promoted LPC‐to‐hepatocyte differentiation as well as genetic suppression of the EGFR‐ERK‐SOX9 axis. Moreover, Sox9b overexpression in LPCs blocked their differentiation into hepatocytes. In the zebrafish liver injury model, both hepatocytes and biliary epithelial cells contributed to LPCs. EGFR inhibition promoted the differentiation of LPCs regardless of their origin. Notably, short‐term treatment with EGFR inhibitors resulted in better liver recovery over the long term. Conclusion: The EGFR‐ERK‐SOX9 axis suppresses LPC‐to‐hepatocyte differentiation during LPC‐mediated liver regeneration. We suggest EGFR inhibitors as a pro‐regenerative therapeutic drug for patients with advanced liver disease

    SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion

    Get PDF
    Synaptic adhesion molecules regulate various aspects of synapse development, function and plasticity. These functions mainly involve trans-synaptic interactions and positive regulations, whereas cis-interactions and negative regulation are less understood. Here we report that SALM4, a member of the SALM/Lrfn family of synaptic adhesion molecules, suppresses excitatory synapse development through cis inhibition of SALM3, another SALM family protein with synaptogenic activity. Salm4-mutant (Salm4) mice show increased excitatory synapse numbers in the hippocampus. SALM4 cis-interacts with SALM3, inhibits trans-synaptic SALM3 interaction with presynaptic LAR family receptor tyrosine phosphatases and suppresses SALM3-dependent presynaptic differentiation. Importantly, deletion of Salm3 in Salm4 mice (Salm3, Salm4) normalizes the increased excitatory synapse number. These results suggest that SALM4 negatively regulates excitatory synapses via cis inhibition of the trans-synaptic SALM3-LAR adhesion. © The Author(s) 2016110101sciescopu
    • 

    corecore