71 research outputs found

    Glaucoma Home Monitoring Using a Tablet- Based Visual Field Test (Eyecatcher): An Assessment of Accuracy and Adherence Over 6 Months

    Get PDF
    PURPOSE: To assess accuracy and adherence of visual field (VF) home monitoring in a pilot sample of patients with glaucoma. DESIGN: Prospective longitudinal feasibility and reliability study. METHODS: Twenty adults (median 71 years) with an established diagnosis of glaucoma were issued a tablet perimeter (Eyecatcher) and were asked to perform 1 VF home assessment per eye, per month, for 6 months (12 tests total). Before and after home monitoring, 2 VF assessments were performed in clinic using standard automated perimetry (4 tests total, per eye). RESULTS: All 20 participants could perform monthly home monitoring, though 1 participant stopped after 4 months (adherence: 98% of tests). There was good concordance between VFs measured at home and in the clinic (r = 0.94, P < .001). In 21 of 236 tests (9%), mean deviation deviated by more than ±3 dB from the median. Many of these anomalous tests could be identified by applying machine learning techniques to recordings from the tablets' front-facing camera (area under the receiver operating characteristic curve = 0.78). Adding home-monitoring data to 2 standard automated perimetry tests made 6 months apart reduced measurement error (between-test measurement variability) in 97% of eyes, with mean absolute error more than halving in 90% of eyes. Median test duration was 4.5 minutes (quartiles: 3.9-5.2 minutes). Substantial variations in ambient illumination had no observable effect on VF measurements (r = 0.07, P = .320). CONCLUSIONS: Home monitoring of VFs is viable for some patients and may provide clinically useful data

    The Human Touch:Using a Webcam to Autonomously Monitor Compliance During Visual Field Assessments

    Get PDF
    Purpose: To explore the feasibility of using various easy-to-obtain biomarkers to monitor non-compliance (measurement error) during visual field assessments. Methods: Forty-two healthy adults (42 eyes) and seven glaucoma patients (14 eyes) underwent two same-day visual field assessments. An ordinary webcam was used to compute seven potential biomarkers of task compliance, based primarily on eye gaze, head pose, and facial expression. We quantified the association between each biomarker and measurement error, as defined by (1) test-retest differences in overall test scores (mean sensitivity), and (2) failures to respond to visible stimuli on individual trials (stimuli -3 dB or more brighter than threshold). Results: In healthy eyes, three of the seven biomarkers were significantly associated with overall (test-retest) measurement error (P = 0.003-0.007), and at least two others exhibited possible trends (P = 0.052-0.060). The weighted linear sum of all seven biomarkers was associated with overall measurement error, in both healthy eyes (r = 0.51, P <0.001) and patients (r = 0.65, P <0.001). Five biomarkers were each associated with failures to respond to visible stimuli on individual trials (all P <0.001). Conclusions: Inexpensive, autonomous measures of task compliance are associated with measurement error in visual field assessments, in terms of both the overall reliability of a test and failures to respond on particular trials ("lapses"). This could be helpful for identifying low-quality assessments and for improving assessment techniques (e.g., by discounting suspect responses or by automatically triggering comfort breaks or encouragement). Translational Relevance: This study explores a potential way of improving the reliability of visual field assessments, a crucial but notoriously unreliable clinical measure

    Acceptability of a home-based visual field test (Eyecatcher) for glaucoma home monitoring: a qualitative study of patients' views and experiences

    Get PDF
    Objectives To explore the acceptability of home visual field (VF) testing using Eyecatcher among people with glaucoma participating in a 6-month home monitoring pilot study. Design Qualitative study using face-to-face semistructured interviews. Transcripts were analysed using thematic analysis. Setting Participants were recruited in the UK through an advertisement in the International Glaucoma Association (now Glaucoma UK) newsletter. Participants Twenty adults (10 women; median age: 71 years) with a diagnosis of glaucoma were recruited (including open angle and normal tension glaucoma; mean deviation=2.5 to -29.9 dB). Results All participants could successfully perform VF testing at home. Interview data were coded into four overarching themes regarding experiences of undertaking VF home monitoring and attitudes towards its wider implementation in healthcare: (1) comparisons between Eyecatcher and Humphrey Field Analyser (HFA); (2) capability using Eyecatcher; (3) practicalities for effective wider scale implementation; (4) motivations for home monitoring. Conclusions Participants identified a broad range of benefits to VF home monitoring and discussed areas for service improvement. Eyecatcher was compared positively with conventional VF testing using HFA. Home monitoring may be acceptable to at least a subset of people with glaucoma

    The Human Touch: Using a Webcam to Autonomously Monitor Compliance During Visual Field Assessments

    Get PDF
    Purpose: To explore the feasibility of using various easy-to-obtain biomarkers to monitor non-compliance (measurement error) during visual field assessments.Methods: Forty-two healthy adults (42 eyes) and seven glaucoma patients (14 eyes) underwent two same-day visual field assessments. An ordinary webcam was used to compute seven potential biomarkers of task compliance, based primarily on eye gaze, head pose, and facial expression. We quantified the association between each biomarker and measurement error, as defined by (1) test-retest differences in overall test scores (mean sensitivity), and (2) failures to respond to visible stimuli on individual trials (stimuli -3 dB or more brighter than threshold).Results: In healthy eyes, three of the seven biomarkers were significantly associated with overall (test-retest) measurement error (P = 0.003-0.007), and at least two others exhibited possible trends (P = 0.052-0.060). The weighted linear sum of all seven biomarkers was associated with overall measurement error, in both healthy eyes (r = 0.51, P < 0.001) and patients (r = 0.65, P < 0.001). Five biomarkers were each associated with failures to respond to visible stimuli on individual trials (all P < 0.001).Conclusions: Inexpensive, autonomous measures of task compliance are associated with measurement error in visual field assessments, in terms of both the overall reliability of a test and failures to respond on particular trials ("lapses"). This could be helpful for identifying low-quality assessments and for improving assessment techniques (e.g., by discounting suspect responses or by automatically triggering comfort breaks or encouragement).Translational Relevance: This study explores a potential way of improving the reliability of visual field assessments, a crucial but notoriously unreliable clinical measure

    Chromosome evolution and the genetic basis of agronomically important traits in greater yam

    Get PDF
    The nutrient-rich tubers of the greater yam, Dioscorea alata L., provide food and income security for millions of people around the world. Despite its global importance, however, greater yam remains an orphan crop. Here, we address this resource gap by presenting a highly contiguous chromosome-scale genome assembly of D. alata combined with a dense genetic map derived from African breeding populations. The genome sequence reveals an ancient allotetraploidization in the Dioscorea lineage, followed by extensive genome-wide reorganization. Using the genomic tools, we find quantitative trait loci for resistance to anthracnose, a damaging fungal pathogen of yam, and several tuber quality traits. Genomic analysis of breeding lines reveals both extensive inbreeding as well as regions of extensive heterozygosity that may represent interspecific introgression during domestication. These tools and insights will enable yam breeders to unlock the potential of this staple crop and take full advantage of its adaptability to varied environments

    Measurement-Induced State Transitions in a Superconducting Qubit: Within the Rotating Wave Approximation

    Full text link
    Superconducting qubits typically use a dispersive readout scheme, where a resonator is coupled to a qubit such that its frequency is qubit-state dependent. Measurement is performed by driving the resonator, where the transmitted resonator field yields information about the resonator frequency and thus the qubit state. Ideally, we could use arbitrarily strong resonator drives to achieve a target signal-to-noise ratio in the shortest possible time. However, experiments have shown that when the average resonator photon number exceeds a certain threshold, the qubit is excited out of its computational subspace, which we refer to as a measurement-induced state transition. These transitions degrade readout fidelity, and constitute leakage which precludes further operation of the qubit in, for example, error correction. Here we study these transitions using a transmon qubit by experimentally measuring their dependence on qubit frequency, average photon number, and qubit state, in the regime where the resonator frequency is lower than the qubit frequency. We observe signatures of resonant transitions between levels in the coupled qubit-resonator system that exhibit noisy behavior when measured repeatedly in time. We provide a semi-classical model of these transitions based on the rotating wave approximation and use it to predict the onset of state transitions in our experiments. Our results suggest the transmon is excited to levels near the top of its cosine potential following a state transition, where the charge dispersion of higher transmon levels explains the observed noisy behavior of state transitions. Moreover, occupation in these higher energy levels poses a major challenge for fast qubit reset

    Overcoming leakage in scalable quantum error correction

    Full text link
    Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC). In a QEC circuit, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade the exponential suppression of logical error with scale, challenging the feasibility of QEC as a path towards fault-tolerant quantum computation. Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle. This shortens the lifetime of leakage and curtails its ability to spread and induce correlated errors. We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than 1×10−31 \times 10^{-3} throughout the entire device. The leakage removal process itself efficiently returns leakage population back to the computational basis, and adding it to a code circuit prevents leakage from inducing correlated error across cycles, restoring a fundamental assumption of QEC. With this demonstration that leakage can be contained, we resolve a key challenge for practical QEC at scale.Comment: Main text: 7 pages, 5 figure

    Measurement-induced entanglement and teleportation on a noisy quantum processor

    Full text link
    Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors

    Non-Abelian braiding of graph vertices in a superconducting processor

    Full text link
    Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing

    The global, regional, and national burden of adult lip, oral, and pharyngeal cancer in 204 countries and territories:A systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Importance Lip, oral, and pharyngeal cancers are important contributors to cancer burden worldwide, and a comprehensive evaluation of their burden globally, regionally, and nationally is crucial for effective policy planning.Objective To analyze the total and risk-attributable burden of lip and oral cavity cancer (LOC) and other pharyngeal cancer (OPC) for 204 countries and territories and by Socio-demographic Index (SDI) using 2019 Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study estimates.Evidence Review The incidence, mortality, and disability-adjusted life years (DALYs) due to LOC and OPC from 1990 to 2019 were estimated using GBD 2019 methods. The GBD 2019 comparative risk assessment framework was used to estimate the proportion of deaths and DALYs for LOC and OPC attributable to smoking, tobacco, and alcohol consumption in 2019.Findings In 2019, 370 000 (95% uncertainty interval [UI], 338 000-401 000) cases and 199 000 (95% UI, 181 000-217 000) deaths for LOC and 167 000 (95% UI, 153 000-180 000) cases and 114 000 (95% UI, 103 000-126 000) deaths for OPC were estimated to occur globally, contributing 5.5 million (95% UI, 5.0-6.0 million) and 3.2 million (95% UI, 2.9-3.6 million) DALYs, respectively. From 1990 to 2019, low-middle and low SDI regions consistently showed the highest age-standardized mortality rates due to LOC and OPC, while the high SDI strata exhibited age-standardized incidence rates decreasing for LOC and increasing for OPC. Globally in 2019, smoking had the greatest contribution to risk-attributable OPC deaths for both sexes (55.8% [95% UI, 49.2%-62.0%] of all OPC deaths in male individuals and 17.4% [95% UI, 13.8%-21.2%] of all OPC deaths in female individuals). Smoking and alcohol both contributed to substantial LOC deaths globally among male individuals (42.3% [95% UI, 35.2%-48.6%] and 40.2% [95% UI, 33.3%-46.8%] of all risk-attributable cancer deaths, respectively), while chewing tobacco contributed to the greatest attributable LOC deaths among female individuals (27.6% [95% UI, 21.5%-33.8%]), driven by high risk-attributable burden in South and Southeast Asia.Conclusions and Relevance In this systematic analysis, disparities in LOC and OPC burden existed across the SDI spectrum, and a considerable percentage of burden was attributable to tobacco and alcohol use. These estimates can contribute to an understanding of the distribution and disparities in LOC and OPC burden globally and support cancer control planning efforts
    • …
    corecore