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ARTICLE

Chromosome evolution and the genetic basis of
agronomically important traits in greater yam
Jessen V. Bredeson 1,18, Jessica B. Lyons 1,2,18, Ibukun O. Oniyinde3, Nneka R. Okereke4, Olufisayo Kolade3,

Ikenna Nnabue4, Christian O. Nwadili4, Eva Hřibová5, Matthew Parker6, Jeremiah Nwogha4, Shengqiang Shu 7,

Joseph Carlson7, Robert Kariba8,9, Samuel Muthemba 8,9, Katarzyna Knop6, Geoffrey J. Barton 6,

Anna V. Sherwood 6,16, Antonio Lopez-Montes3,17, Robert Asiedu 3, Ramni Jamnadass8,9, Alice Muchugi8,9,

David Goodstein 7, Chiedozie N. Egesi3,4,10, Jonathan Featherston11, Asrat Asfaw 3, Gordon G. Simpson6,12,

Jaroslav Doležel 5, Prasad S. Hendre 8,9, Allen Van Deynze 13, Pullikanti Lava Kumar3,

Jude E. Obidiegwu 4✉, Ranjana Bhattacharjee 3✉ & Daniel S. Rokhsar 1,2,7,14,15✉

The nutrient-rich tubers of the greater yam, Dioscorea alata L., provide food and income

security for millions of people around the world. Despite its global importance, however,

greater yam remains an orphan crop. Here, we address this resource gap by presenting a

highly contiguous chromosome-scale genome assembly of D. alata combined with a dense

genetic map derived from African breeding populations. The genome sequence reveals an

ancient allotetraploidization in the Dioscorea lineage, followed by extensive genome-wide

reorganization. Using the genomic tools, we find quantitative trait loci for resistance to

anthracnose, a damaging fungal pathogen of yam, and several tuber quality traits. Genomic

analysis of breeding lines reveals both extensive inbreeding as well as regions of extensive

heterozygosity that may represent interspecific introgression during domestication. These

tools and insights will enable yam breeders to unlock the potential of this staple crop and take

full advantage of its adaptability to varied environments.
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Yams (genus Dioscorea) are an important source of food
and income in tropical and subtropical regions of Africa,
Asia, the Pacific, and Latin America, contributing more

than 200 dietary calories per capita daily for around 300 million
people1. Yam tubers are rich in carbohydrates, contain protein
and vitamin C, and are storable for months after harvesting, so
they are available year-round2,3. World annual production of yam
in 2018 was estimated at 72.6 million tons (FAOSTAT 2020).
Over 90% of global yam production comes from the ‘yam belt’
(Nigeria, Benin, Ghana, Togo, and Cote d’Ivoire) in West Africa,
where yam’s importance is demonstrated by its vital role in tra-
ditional culture, rituals, and religion3–5. While yams are primarily
dioecious, and hence obligate outcrossers, they are vegetatively
propagated, allowing genotypes with desirable qualities (disease
resistance, cooking quality, nutritional value) to be maintained
over subsequent planting seasons.

Greater yam (Dioscorea alata L.), also called water yam, winged
yam, or ube, among other names, is the species with the broadest
global distribution1. D. alata is thought to have originated in
Southeast Asia and/or Melanesia2,6. It was introduced to East
Africa as many as 2000 years ago and reached West Africa by the
1500s2,7. Several traits of greater yam make it particularly valuable
for economic production and an excellent candidate for sys-
tematic improvement. It is adapted to tropical and temperate
climates, has a relatively high tolerance to limited-water envir-
onments, and no other yam comes close for yield in terms of
tuber weight. Greater yam is easily propagated, its early vigor
prevents weeds, and its tubers have high storability8. The tubers
of D. alata possess high nutritional content relative to other
Dioscorea spp9,10.

Over the last two decades, global yam production has doubled,
but these increases have predominantly been achieved through
the expansion of cultivated areas rather than increased
productivity1 (FAOSTAT 2020). To meet the demands of an
ever-growing population and tackle the threats that constrain
yam production, the rapid development of improved yam vari-
eties is urgently needed11. Conventional breeding for desired
traits in greater yam is arduous, however, due to its long growth
cycle and erratic flowering, and is further complicated by the
polyploidy common in this species12–14. Efforts are currently
underway by breeders to develop greater yam varieties with
improved yield, resistance to pests and diseases, and tuber quality
consistent with organoleptic preferences such as taste, color, and
texture11. A critical challenge for greater yam is its high sus-
ceptibility to the foliar disease anthracnose, caused by the fungal
pathogen Colletotrichum gloeosporioides Penz. Anthracnose dis-
ease is characterized by leaf necrosis and shoot dieback, and can
cause losses of over 80% of production15–18. Anthracnose disease
affects greater yam more than other domesticated yams; moderate
resistance to this disease is present, however, in greater yam
landraces and breeder’s lines19,20. High-quality genomic resour-
ces and tools can facilitate rapid breeding methods for greater
yam improvement with huge potential to impact food and
nutritional security, particularly in Africa.

Here, we describe a chromosome-scale reference genome
sequence for D. alata and a dense 10k marker composite genetic
linkage map from five populations involving seven distinct par-
ental genotypes. Comparison of the D. alata reference genome
sequence with the recently sequenced genomes of the distantly
related D. rotundata21 and D. zingiberensis22 reveals substantial
conservation of chromosome structure between D. alata and D.
rotundata, but considerable rearrangement relative to the more
deeply divergent D. zingiberensis lineage. Analysis of the D. alata
genome sequence supports the existence of ancient polyploidy
events shared across Dioscoreales. Using a non-parametric sta-
tistical test for biased gene loss between subgenomes, we infer that

all Dioscorea share an ancient paleo-allotetraploidy, which was
followed by species-specific chromosome rearrangements. We use
genomic and genetic resources to identify nine QTL for
anthracnose resistance and tuber quality traits. Our dense multi-
parental genetic map complements the maps previously used for
QTL mapping for anthracnose resistance23–25 and sex
determination26. These tools and resources will empower bree-
ders to use modern genetic tools and methods to breed the crop
more efficiently, thereby accelerating the release of improved
varieties to farmers.

Results and discussion
Genome sequence and structure. We generated a high-quality
reference genome sequence for D. alata by assembling whole-
genome shotgun sequence data from PacBio single-molecule
continuous long reads (234× coverage in reads with 15.1 kb N50
read length), with short-read sequencing for polishing and addi-
tional mate-pair linkage (see Methods, Table 1, Supplementary
Note 1, Supplementary Data 1). High-throughput chromatin
conformation contact (HiC) data and a composite meiotic linkage
map (see below) were used to organize the contigs (N50 length
4.5Mb) into n= 20 chromosome-scale sequences, matching the
observed karyotype, with each pair of homologous chromosomes
represented by a single haplotype-mosaic sequence (Supplemen-
tary Figs. 1–3). The genome assembly spans a total of 479.5Mb,
consistent with estimates of 455 ± 39Mb by flow cytometry13, and
477Mb by k-mer-based analyses (Table 1, Supplementary Note 1).
The chromosome-scale ‘version 2’ assembly is available via Yam-
Base (ftp://yambase.org/genomes/Dioscorea_alata) and Phytozome
(https://phytozome-next.jgi.doe.gov/info/Dalata_v2_1), replacing
the early ‘version 1’ draft released in those databases in 2019.

The genomic reference genotype, TDa95/00328, is a breeding
line from the Yam Breeding Unit of the International Institute of
Tropical Agriculture (IITA), Ibadan, Nigeria. It is moderately
resistant to anthracnose23,27 and has been used as a parent

Table 1 Assembly and annotation statistics.

Assembly statistic Value

Scaffold sequence total/count 480.0Mb/25
Scaffold N50 length/count 24.0Mb/9
Scaffold N90 length/count 19.5Mb/18
Contig sequence total/count 479.5Mb/532
Contig N50 length/count 4.5Mb/31
Contig N90 length/count 565.0 kb/126

Annotation statistic Value

Primary transcriptsa (loci) 25,189
Alternate transcriptsb 13,414
Total transcripts 3860
Primary transcripts
Average number of exons 5.5
Median exon length (bp) 156
Median intron length (bp) 151
Number of complete genes 24,614
Number of incomplete genes with start codon 218
Number of incomplete genes with stop codon 281
Gene model support
Number of genes with Pfam annotation 19,599
Number of genes with Panther annotation 23,183
Number of genes with KOG annotation 10,939
Number of genes with KEGG Orthology annotation 6849
Number of genes with E.C. number annotation 7654

aThe longest transcript for each protein-coding gene.
bAll other splice isoforms.
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frequently in crossing programs. TDa95/00328 is diploid with
2n= 2x= 40, as confirmed by chromosome counting (Supple-
mentary Fig. 2) and genetically by segregation of AFLP23. The
reference accession exhibits long runs of homozygosity due to
recent inbreeding (Supplementary Fig. 4); outside of these
segments we observe 7.9 heterozygous sites per kilobase.

To corroborate our genome assembly and provide tools for
genetic analysis, we generated ten genetic linkage maps from
eleven mapping populations that involved seven distinct parents
segregating for relevant phenotypic traits (one of the maps
combined two small, related mapping populations; Table 2,
Supplementary Tables 1 and 2; see below). These mapping
populations were generated from biparental crosses performed at
IITA, with 32–317 progeny per cross. Genotyping was performed
using sequence tags generated with DArTseq (Diversity Arrays
Technology Pty), mapped to the genome assembly, and filtered
(Methods, Supplementary Note 2), producing 13,584 biallelic
markers that segregate in at least one of our mapping populations
(Supplementary Table 3).

The 20 linkage groups derived from individual maps corrobo-
rated the sequence-based genome assembly and were particularly
useful for interpreting HiC linkage between chromosome arms
and determining their correct intrachromosomal orientations.
These features were difficult to organize using HiC alone, due to
strong ‘Rabl’ configurations (Fig. 1a, and Supplementary Figs. 1
and 5)—the three-dimensional chromatin structure characterized
by polarized centromere or telomere clustering on the inner
membranes of cell nuclei28–30—that led to contacts between the
distal regions of chromosome arms (see below). The ten genetic
maps were highly concordant (Fig. 1b; Kendall’s tau correlation
coefficients= 0.9091–0.9626), and we combined them into a
single composite linkage map using five maps that capture the
genetic diversity of the seven distinct parents (Supplementary
Table 3). The composite map spans 1817.9 centimorgans,
accounting for a total of 2178 meioses (1089 individuals), and
includes 10,448 well-ordered (Kendall’s tau= 0.9989; Supple-
mentary Fig. 6) markers (excluding markers genotyped in
individual crosses that were discordant post-imputation and/or
were not phaseable) (Methods, Supplementary Note 2). This is
the highest resolution genetic linkage map for D. alata produced
to date.

The D. alata reference genome sequence encodes an estimated
25,189 protein-coding genes, based on an annotation that took
advantage of both existing and the D. alata transcriptome
resources generated in this study as well interspecific sequence
homology (Table 1, Methods, Supplementary Note 3). With a
benchmark set of embryophyte genes31,32, we estimate that the D.
alata gene set is 97.8% complete, with 1.5% gene fragmentation.
While BUSCO methodology suggests that only 0.7% of the genes
are missing, this is an overestimate, since some of these nominally-
missing genes are detected by more sensitive searches (Supple-
mentary Note 3). Our transcriptome datasets include short-read
RNA-seq as well as 626,000 long, single-molecule direct-RNA
sequences from twelve TDa95/00328 tissues. The transcriptome
data identified 13,414 alternative transcripts. The great majority of
genes have functional assignments through Pfam (n= 19,599) and
Panther (n= 23,183) (Table 1).

Within chromosomes, protein-coding gene and transposable
element densities are strongly anticorrelated (Pearson’s r=−0.885),
with gene loci concentrated in the highly-recombinogenic distal
chromosome ends (Pearson’s r=+0.823) and transposable
elements, particularly Ty3/metaviridae and Ty1/pseudoviridae LTRs
and other unclassified repeats, are enriched in the recombination-
poor pericentromeres (Pearson’s r=−0.718) (Fig. 1c, Supplemen-
tary Fig. 6, Supplementary Table 4). Homopolymers and simple-
sequence repeats, however, were positively correlated with gene T

ab
le

2
M
ap

pi
ng

po
pu

la
ti
on

s
us
ed

in
th
is

st
ud

y.

P
op

.
ID

a
In
st
.

S
ee
d
pa

re
nt

P
ol
le
n
pa

re
nt

P
ut
at
iv
e
pa

re
nt
al

re
la
ti
on

b
T
ra
it
(s
)
st
ud

ie
d

T
D
a1
4
0
1

IIT
A

T
D
a0

5/
0
0
0
15

T
D
a9

9
/0

0
0
4
8

H
al
f
av
un

cu
la
r

A
nt
hr
ac
no

se
su
sc
ep

tib
ili
ty

(fi
el
d,

D
LA

)
T
D
a1
4
0
2

IIT
A

T
D
a0

5/
0
0
0
15

T
D
a0

2/
0
0
0
12

Fo
ur
th
-d
eg
re
e
re
la
tiv

e
A
nt
hr
ac
no

se
su
sc
ep

tib
ili
ty

(fi
el
dc
,D

LA
),
tu
be

r
fr
es
h
w
ei
gh

t,
tu
be

r
dr
y
w
ei
gh

t,
tu
be

r
fl
es
h
co
lo
r,
tu
be

r
ox
id
at
io
n,

dr
y
m
at
te
r
co
nt
en

t
T
D
a1
4
0
3

IIT
A

T
D
a0

0
/0

0
0
0
5

T
D
a0

2/
0
0
0
12

T
hi
rd
-d
eg
re
e
re
la
tiv

e
A
nt
hr
ac
no

se
su
sc
ep

tib
ili
ty

(fi
el
d,

D
LA

),
tu
be

r
fr
es
h
w
ei
gh

t,
tu
be

r
dr
y
w
ei
gh

t,
tu
be

r
fl
es
h
co
lo
r,
tu
be

r
ox
id
at
io
n,

dr
y
m
at
te
r
co
nt
en

t
T
D
a1
4
19

IIT
A

T
D
a9

9
/0

0
24

0
T
D
a0

2/
0
0
0
12

U
nr
el
at
ed

A
nt
hr
ac
no

se
su
sc
ep

tib
ili
ty

(fi
el
d,

D
LA

c )
,t
ub

er
fr
es
h
w
ei
gh

t,
tu
be

r
dr
y
w
ei
gh

t,
dr
y
m
at
te
r
co
nt
en

tc
,

tu
be

r
ox
id
at
io
nc
,
tu
be

r
fl
es
h
co
lo
r

T
D
a1
4
27

IIT
A

T
D
a9

5/
0
0
32

8
T
D
a0

2/
0
0
0
12

U
nr
el
at
ed

A
nt
hr
ac
no

se
su
sc
ep

tib
ili
ty

(fi
el
d,

D
LA

),
tu
be

r
fr
es
h
w
ei
gh

t,
tu
be

r
dr
y
w
ei
gh

t,
tu
be

r
fl
es
h
co
lo
r,
tu
be

r
ox
id
at
io
n,

dr
y
m
at
te
r
co
nt
en

t
T
D
a1
4
0
1B

N
R
C
R
I

T
D
a0

5/
0
0
0
15

T
D
a9

9
/0

0
0
4
8

H
al
f
av
un

cu
la
r

A
nt
hr
ac
no

se
su
sc
ep

tib
ili
ty

(D
LA

),
pr
es
en

ce
of

co
rm

,
ab
ili
ty

of
co
rm

to
se
pa
ra
te
,
co
rm

ty
pe

,
tu
be

r
sh
ap
e,

tu
be

r
si
ze

c ,
tu
be

r
su
rf
ac
e
te
xt
ur
e,

ro
ot
s
on

tu
be

r,
pl
ac
em

en
t
of

ro
ot
s
on

tu
be

r
T
D
a1
50

6
T
D
a1
6
21

N
R
C
R
I
N
R
C
R
I

T
D
a0

5/
0
0
0
15

T
D
a0

2/
0
0
0
12

Fo
ur
th
-d
eg
re
e
re
la
tiv

e
(I
n
T
D
a1
50

6
)
A
nt
hr
ac
no

se
su
sc
ep

tib
ili
ty

(D
LA

),
pr
es
en

ce
of

co
rm

,
ab
ili
ty

of
co
rm

to
se
pa
ra
te
,
co
rm

ty
pe

,
tu
be

r
sh
ap
e,

tu
be

r
si
ze
,
tu
be

r
su
rf
ac
e
te
xt
ur
e,

ro
ot
s
on

tu
be

r,
pl
ac
em

en
t
of

ro
ot
s
on

tu
be

r
T
D
a1
51
2
T
D
a1
6
0
3

N
R
C
R
I
N
R
C
R
I

T
D
a0

0
/0

0
0
0
5

T
D
a0

1/
0
0
0
39

Pa
re
nt
–
of
fs
pr
in
g

(I
n
T
D
a1
51
2)

A
nt
hr
ac
no

se
su
sc
ep

tib
ili
ty

(D
LA

),
pr
es
en

ce
of

co
rm

,
ab
ili
ty

of
co
rm

to
se
pa
ra
te
,
co
rm

ty
pe

,
tu
be

r
sh
ap
e,

tu
be

r
si
ze
,
tu
be

r
su
rf
ac
e
te
xt
ur
e,

ro
ot
s
on

tu
be

r,
pl
ac
em

en
t
of

ro
ot
s
on

tu
be

r
T
D
a1
6
10

N
R
C
R
I

T
D
a9

9
/0

0
24

0
T
D
a0

2/
0
0
0
12

U
nr
el
at
ed

–

Po
p.

ID
m
ap
pi
ng

po
pu

la
tio

n
id
en

tifi
er
,
In
st
.i
ns
tit
ut
io
n
th
at

gr
ew

th
e
pl
an
ts

an
d
pe

rf
or
m
ed

th
e
ph

en
ot
yp
in
g,

Pa
re
nt
al

Re
la
tio
n
pa
re
nt
al

re
la
te
dn

es
s
as

as
se
ss
ed

in
th
is
st
ud

y,
D
LA

de
ta
ch
ed

le
af

as
sa
y.

a T
he

fi
rs
t
tw

o
di
gi
ts

in
a
po

pu
la
tio

n
ID

de
no

te
th
e
ye
ar

of
cr
os
si
ng

.A
ll
cr
os
se
s
w
er
e
pe

rf
or
m
ed

at
IIT

A
an
d,

w
he

re
ap
pl
ic
ab
le
,p

ro
ge
ny

w
er
e
se
nt

to
N
R
C
R
Ia

s
bo

ta
ni
ca
ls
ee
ds
.F
or

m
ap
pi
ng

po
pu

la
tio

ns
th
at

sh
ar
e
pa
re
nt
s
ac
ro
ss

in
st
itu

te
s,
su
bs
et
s
of

th
e
pr
og

en
y
w
er
e
se
nt

to
N
R
C
R
I.
Fo
r
N
R
C
R
Ic
ro
ss
es

w
ith

th
e
sa
m
e
pa
re
nt
s
bu

t
di
ff
er
en

t
po

pu
la
tio

n
ID
s
(T
D
a1
50

6
/1
6
21

an
d
T
D
a1
51
2/

16
0
3)
,t
he

se
co
nd

po
pu

la
tio

n
ID

w
as

as
si
gn

ed
to

th
os
e
in
di
vi
du

al
s
fr
om

a
cr
os
s
pe

rf
or
m
ed

w
ith

th
e
sa
m
e
pa
re
nt
s
in
a
su
bs
eq

ue
nt

ye
ar
.W

e
tr
ea
te
d
th
es
e
pa
ir
s
as

si
ng

le
po

pu
la
tio

ns
fo
r
th
e
pu

rp
os
es

of
lin
ka
ge

m
ap
pi
ng

,b
ut

in
di
vi
du

al
ly

fo
r
Q
T
L
an
al
ys
es
.

b P
ut
at
iv
e
pa
re
nt
al

re
la
tio

ns
de

ri
ve
d
fr
om

Fi
g.

4
.

c T
ra
its

fo
r
w
hi
ch

si
gn

ifi
ca
nt

Q
T
L
w
er
e
id
en

ti
fi
ed

(s
ee

T
ab
le

3)
.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29114-w ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2001 | https://doi.org/10.1038/s41467-022-29114-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(Pearson’s r=+0.838) and recombination (Pearson’s r=+0.728)
densities.

Analysis of chromatin conformation capture (HiC) data reveals
the structure of interphase chromosomes in D. alata (Methods,
Supplementary Note 4). We find that all chromosomes adopt a
Rabl-like configuration (Supplementary Fig. 5) in which each
chromosome appears ‘folded’ in the vicinity of the centromere, as
(1) chromatin contacts are enriched among chromosome ends
and (2) these chromosome ends are depleted of contacts with the
pericentromeres (see also refs. 28–30). D. alata chromosomes also
show alternating A/B chromatin compartmentalization, as is
demonstrated in several other plant species33. In D. alata, the
gene-rich distal regions of each chromosome are generally
spanned by open A domains (between gene density and A/B

domain status, Pearson’s r=+0.686), while the relatively gene-
poor and transposon-rich pericentromeres are characterized by
closed B domains that are often punctuated by smaller A domains
(Supplementary Fig. 7).

Comparative analysis and paleopolyploidy. Comparison of the
D. alata genome sequence and protein-coding annotation with
those of white yam (D. rotundata21, also known as Guinea yam),
bitter yam (D. dumetorum34), and peltate yam (D. zingiberensis22)
highlights the completeness of our sequence and annotation and
the extensive sequence divergence across the genus. Among the
Dioscorea species sequenced to date, the annotation of D. alata
appears to be the most complete (Supplementary Table 5,
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Supplementary Note 3). For example, D. alata has the fewest
missing conserved gene families in cross-species comparisons
within Dioscoreaceae (53 in D. alata compared with 385 for D.
zingiberensis and 595 for D. rotundata) and in cross-monocot
comparisons (7 in D. alata compared with 99 in D. zingiberensis
and 110 in D. rotundata) (Supplementary Fig. 8). These metrics
combine genome assembly completeness and accuracy with exon-
intron structure predictions based, in part, on transcriptome
resources.

At the nucleotide level, D. alata coding sequences exhibit 97.4%,
93.6%, and 86.5% identity with D. rotundata, D. dumetorum, and
D. zingiberensis, corresponding to median synonymous substitu-
tion (KS) rates of 0.064, 0.163, and 0.389, respectively. These
measures are consistent with D. zingiberensis being a deeply
branching outgroup to the clade formed by D. alata, D. rotundata,
and D. dumetorum (see also Supplementary Table 6), and
highlights the ~60My old divergences within the genus Dioscorea.

The medicinal plant Trichopus zeylanicus (common name
‘Arogyappacha’ in India, meaning ‘the green that gives strength’)35

is a more distantly related member of the Dioscoreaceae family,
with 77.9% identity and median KS of 0.804.

The (n= 20) chromosome sequences of D. alata and D.
rotundata21,36,37 are in 1:1 correspondence, and are highly
collinear (Fig. 2a, Supplementary Fig. 9a). The few intra-
chromosome differences observed could represent bona fide
rearrangements between species or, possibly, imperfections in the
D. rotundata v2 assembly21 that could have arisen from the
reliance on linkage mapping to order and orient D. rotundata
scaffolds, especially in recombination-poor pericentromeric
regions of the genome. Under the assumption that D. rotundata
chromosomes are in 1:1 correspondence with D. alata chromo-
somes, we can provisionally assign four large but unmapped D.
rotundata scaffolds to chromosomes (Fig. 2a). We found one
inter-chromosome difference (not present in the D. rotundata v1
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assembly37), which requires further study (Supplementary
Fig. 9a). While the draft D. dumetorum genome assembly is not
organized into chromosomes, comparison with the D. alata
reference sequence shows that the two genomes are locally
collinear on the scale of the D. dumetorum contigs, with only one
discordance (Supplementary Fig. 9b). This observation suggests a
provisional organization of the D. dumetorum contigs into
probable chromosomes. Notably, the distantly related D. zingiber-
ensis has a haploid complement of n= 10 (ref. 38), compared with
n= 20 found in D. alata, D. rotundata21,39, and D. dumetorum2,40.
We find that the D. zingiberensis chromosomes22 were formed
from ancestral, D. alata-like chromosomes and/or chromosome
arms by combinations of end-to-end and centric fusions and
translocations (Fig. 2a, Supplementary Fig. 9c).

We found evidence for two ancient paleotetraploidies in the D.
alata lineage. These duplications evidently preceded the origin of
the genus, since all Dioscorea genome sequences show one-to-one
orthology (Supplementary Fig. 9a–c, Supplementary Note 5). The
most recent paleotetraploidy is apparent from extensive collinear
paralogy in D. alata (Fig. 2b) and coincides with the genome
duplication recently described in D. zingiberensis22 and previously
identified based on transcriptome analysis of D. villosa in the
context of one thousand plant transcriptomes as DIV1-alpha41, but
not found in an earlier analysis that included the D. opposita
transcriptome42. Following the common use of Greek letters to
denote plant polyploidies, we designate this Dioscorea lineage
duplication as ‘delta.’ The median sequence divergence between
1,578 delta paralogs in D. alata is KS= 0.869 substitutions/site
(Fig. 2c). While comparisons with the draft genome assembly of
T. zeylanicus (KS= 0.804 to D. alata) further suggest that
the delta paleotetraploidy may have preceded the origin of
the family Dioscoreaceae, the fragmentation of the T. zeylanicus
assembly precludes a definitive assessment. The timing of
the delta duplication (estimated to be 64 Mya22) is contempora-
neous with the K/T boundary and a cluster of other successful
paleopolyploidies43.

Analysis of the D. alata genome sequence reveals large-scale
genomic reorganization after the delta duplication. D. alata
chromosomes preserve long collinear paralogous segments arising
from the delta paleotetraploidy event, and the genomic
organization of these segments reveals large-scale rearrangements
after whole-genome duplication (Fig. 2d, Supplementary Data 2).
These include cases of one-to-one whole-chromosome paralogs,
(chromosomes 1 and 11; 7 and 12) as well as examples of centric
insertion (e.g., the paralog of chromosome 3 was inserted within
the paralog of chromosome 15 to form chromosome 8; the
paralog of chromosome 17 was inserted into the paralog of
chromosome 10 to form most of the chromosome 5). Other large-
scale rearrangements are evident, including apparent end-to-end
‘fusions’ (or more properly translocations44). Taken together,
these paralogies provide further evidence for the delta
duplication.

Genome duplication can occur by two distinct evolutionary
mechanisms45: allotetraploidy (genome duplication after
hybridization of two distinct diploid progenitors) or auto-
tetraploidy (genome duplication within a single species). Since
hybridization brings together genomes with distinct epigenetic
properties46, a hallmark of ancient allotetraploidy is differ-
ential evolution of the homoeologous chromosome sets
(‘subgenomes’) inherited from distinct progenitor species. In
particular, paleo-allotetraploids may exhibit asymmetric gene
loss (or conversely, gene retention) between subgenomes, often
referred to as ‘biased fractionation’45,47,48. While the observa-
tion of asymmetric gene retention is considered positive evidence
for paleo-allotetraploidy45, a lack of detectable asymmetry in gene
loss can be consistent either with autotetraploidy or with

allotetraploidy that is recent and/or involved hybridization of
closely related progenitors species.

To test for patterns of differential gene retention that are
diagnostic of paleo-allotetraploidy, we analyzed 15 robust pairs
of paralogous D. alata segments (each with more than 40
paralogous genes) from the delta duplication, drawn from 11
distinct chromosome pairs. We observe a bimodal distribution of
retention rates across these 30 chromosomal segments relative to
the inferred unduplicated gene complement (Methods, Supple-
mentary Note 5), with peaks at 0.63 and 0.48 (Supplementary
Fig. 10). Importantly, for each of the 11 homoeologous
chromosome pairs, one paralog has a high retention rate and
the other low (Supplementary Table 7). Such a paired distribution
of high and low-retention chromosomes is unexpected under the
null (autotetraploid) model of uncorrelated gene loss
(p= 2.9 × 10−3; k= 11, n= 11) (Supplementary Table 8, Supple-
mentary Note 5). Analysis of the other Dioscorea genomes yields
consistent results (Supplementary Tables 7 and 8).

Our finding of consistent patterns of differential gene retention
between homoeologous chromosomes (1) allows us to reject the
autotetraploid hypothesis, and (2) provides positive support for a
paleo-allotetraploid scenario for the ancient delta genome
duplication in Dioscorea. Under this paleo-allotetraploid scenario,
the high- and low-retention chromosomes of Dioscorea spp.
represent the descendants of the ancestral chromosomes of the
two progenitors (now subgenomes). Since our method does not
require an extant relative of the unduplicated progenitors49 it can
be applied to other ancient genome duplications, with the caveat
that not all allotetraploidizations may trigger asymmetric gene
loss48,50.

In addition to delta, the D. alata genome sequence also displays
relicts of a more ancient genome-wide duplication in the form of
nearly-collinear ancient paralogous segments with median
KS= 1.21 substitutions per site (Fig. 2b, c). We identify this
duplication with the famed ‘tau’ duplication shared by other core
monocots, including grasses50, pineapple (Ananas comosus51), oil
palm (Elaeis guineensis52), and asparagus (Asparagus officinalis53)
but not duckweed (Spirodela polyrhiza54). The tau duplication has
also been noted in transcriptome analyses41,42. The clear 2:2
pattern of orthology between yam, pineapple, and oil palm
(Supplementary Fig. 9d, e) confirms that these three lineages have
each experienced one lineage-specific whole-genome duplication
(delta, sigma, and p, respectively) since they diverged from each
other. This pattern implies that relicts of any earlier duplications
observed in these species must represent shared events. Since
Dioscoreales is one of several early-branching core monocot
lineages (only Petrosaviales branches earlier), the discovery of tau
in yam implies that this duplication likely preceded the
divergence of the core monocot clade (Supplementary Figs. 9f
and 11). (Since tau occurred close in time to the divergence of the
non-Petrosaviales core monocots, the combination of tau and the
respective lineage-specific duplications produces 4:4 patterns of
paralogy in dot plots. See Supplementary Fig. 9d, e)

QTL mapping. To demonstrate the utility of our dense linkage
maps and high-quality D. alata reference genome sequence for
advancing greater yam breeding, we searched for quantitative
trait loci (QTL) for resistance to anthracnose disease and several
tuber quality traits (dry matter, oxidation, tuber color, corm type,
and other traits). Our mapping populations were generated in
controlled crosses by yam breeders at IITA, Nigeria, using parents
from the yam breeding program (Table 2, Supplementary
Table 1). Phenotyping was performed in Nigeria at IITA Ibadan
and NRCRI in Umudike (Methods, Supplementary Note 6).
Leveraging the ability to clonally propagate individuals, we
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measured multiple traits over the years 2016–2019. Our QTL
analyses exploited the imputed genotypes derived from our dense
linkage maps. In total, we found eight distinct QTL: three for
anthracnose resistance and five for tuber traits (Fig. 3, Table 3,
Supplementary Figs. 12–13).

QTL for anthracnose resistance. Yam Anthracnose Disease
(YAD), or yam dieback, is a major disease afflicting yams caused
by the fungus Colletotrichum gloeosporioides15,18. Greater yam is
particularly susceptible to YAD, although resistance has been
shown to vary among D. alata genotypes55. We sought QTL for
YAD resistance using field trials in five mapping populations and
detached leaf assays in eight mapping populations (Table 2,
Methods, Supplementary Note 6). While most of these popula-
tions did not show significant QTL, we found three significant
anthracnose resistance QTL in two of them.

In field trials of the TDa1402 population, we found a major
QTL on chromosome 5 (p= 1.69 × 10−4) that explains 48.2% of
phenotypic variance in the 2017 data, with an additive effect
(Fig. 3a–c), and a minor QTL on chromosome 19 (Supplementary
Fig. 12a–c) that explains 29.9% of the variance in the 2018 data
(p= 1.25 × 10−2). Although anthracnose response and resistance
are poorly understood in yams, studies in other species suggest
potential candidate genes overlapping these QTL intervals,
including a gene (Dioal.05G183500) on chromosome 5 that

encodes a receptor-like EIX1/2 protein, which is a member of the
LRR (leucine-rich-repeat) superfamily of plant disease resistance
proteins56, and genes on chromosome 19 that encode members of
the EMSY-LIKE family of immune regulators of fungal disease
resistance57,58 (Dioal.19G063700), three NB-ARC domain-containing
R-gene analog (RGA) disease resistance protein-encoding genes59

(Dioal.19G073100, Dioal.19G074700, and Dioal.19G084600), and
two genes (Dioal.19G066100 and Dioal.19G066200) encoding
proteins of unknown function that contain C-terminal domains of
the ENHANCED DISEASE RESISTANCE 2 (EDR2) family that are
negative regulators of plant-pathogen response60,61. These QTL
are candidates for use in marker-assisted breeding and provide
leads for further molecular characterization of anthracnose
disease response in yam. However, since variation in levels of
infestation, overall plant vigor, and timing and amount of rainfall
influence disease severity in field trials, validation of these QTL is
required.

In detached leaf assays of the TDa1419 population, performed
under varying conditions over three years (Methods), we found a
QTL of smaller effect (7.3% of phenotypic variance) on
chromosome 6 (Supplementary Fig. 12d–g). While this QTL
was marginally significant (p= 1.28 × 10−2), it was found only
using three-year averages, and the locus was not significantly
associated with YAD in the data from individual years.
Furthermore, anthracnose disease levels, as measured by detached
leaf assay, were not significantly correlated across genotypes over

Fig. 3 Quantitative trait locus for anthracnose resistance. a Exemplars of the yam anthracnose disease (YAD) field assessment severity rating scale
(scored 1–5) used at IITA in Ibadan, Nigeria. b Genome-wide QTL association scan for YAD resistance in the TDa1402 genetic population (n= 53
biologically independent samples) for the year 2017. A statistically significant association (corrected p= 1.69 × 10−4) was found on chromosome 5, at
23.3Mb. Per-locus Wald statistic-based logistic regression significance values (gray line) were corrected for multiple testing (black line) via max(T)
adjustment with 1 × 106 permutations. The minimum significance threshold (α= 0.05) is represented with a cyan horizontal line. c Effect plot for the peak
locus on chromosome 5 at 23.3Mb, the genotypes (X-axis) of which explain 48.2% of the observed phenotypic variance (i.e., narrow-sense heritability,
h2), suggests that an increased dose of the ‘A’ allele is associated with lower severity of YAD. Centerline and whisker plots, and their corresponding
statistics (X-axis), represent the mean ± 95% confidence intervals. d Plot showing the strength of linkage disequilibrium (LD) between the peak marker
(cyan diamond) and other loci (black points) in chromosome 5. LD was calculated as Pearson’s correlation (r) between alleles. Source data are provided as
a Source Data file.
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years. These observations suggest that variation in YAD may be
dominated by non-genetic factors.

While previous studies identified two significant anthracnose
QTL using EST-SSRs25 and three QTL using GBS-SNPs62, none
of these colocalize with the QTL in our study. This discrepancy
(and the variability seen among different years in our work) may
be due to differences in the parental yam genotypes, differences in
anthracnose strain and/or inoculation rate in these field studies,
and possible genotype-by-environment interactions. Although
our parental lines show evidence suggesting past introgression
(see below), we did not find any overlaps between these putatively
introgressed blocks and our QTL, as might be expected if disease
resistance was brought into cultivated yam from a related wild
species.

QTL for tuber quality traits. Post-harvest oxidation causes
browning of yam tuber flesh and flavor changes that reduce crop
value63. We found an additive-effect QTL for tuber oxidation
after peeling at both 30 min (p= 5.86 × 10−3) and 180 min
(p= 1.38 × 10−2) on chromosome 18 in the TDa1419 population
(Supplementary Fig. 13a–f). The QTL explained 13.67% and
11.88% of the phenotypic variance at 30 and 180min after peeling,
respectively. In the TDa1427 population, a closely linked QTL
(p= 4.52 × 10−6), located 2Mb upstream on the same chromo-
some, explained 31.3% of the phenotypic variance in oxidation
after 30min (Supplementary Fig. 13g–i). Although enzymatic
browning in yam remains poorly understood, polyphenol oxidases
and peroxidases are active during browning of D. alata and D.
rotundata64, and inhibition of this activity has been shown to
reduce browning in Chinese yam (D. polystachya)65. We find a
cluster of three peroxidase-encoding genes (Dioal.18G098800,
Dioal.18G099400, and Dioal.18G100900) on chromosome 18 at
26.23–26.36Mb, within ~200 kb of the oxidation QTL at 26.50Mb
in TDa1419 and within 2Mb of the oxidation QTL in TDa1427,
raising the possibility that oxidation is affected by genetic variation
in peroxidase activity.

Dry matter (principally starch) content is an important
measure of yam yield66. We found a single, minor QTL
(explaining 10.2% of the phenotypic variance for the dry matter)

on chromosome 18 (Supplementary Fig. 13j–l) in population
TDa1419, at position Chr18:25,069,928 (p= 2.27 × 10−2), with
genotypes segregating in the population in a pseudo-testcross
configuration. Lastly, we identified two QTL for tuber size
(p= 4.19 × 10−2) and shape (p= 3.17 × 10−2) in populations
TDa1401B and TDa1512, respectively, accounting for 28.9% and
34.1% of their phenotypic variances (Supplementary Fig. 13m–r).
While three loci associated with dry matter content and two
associated with oxidative browning were previously identified via
a genome-wide association study (GWAS)67, these QTL do not
colocalize with those found here, which may be due to differences
in the parental yam genotypes or possible genotype-by-
environment interactions.

Genetic variation within D. alata. To enable future genetic
analyses, we developed a catalog of nearly 3.05 million biallelic
single-nucleotide variants (SNVs) in D. alata, based on whole-
genome shotgun resequencing (Supplementary Note 7, Supple-
mentary Data 1, Supplementary Fig. 14) of breeding lines
representing the seven parents of our biparental mapping popu-
lations and an additional breeding line (TDa95-310). Of the 3.05
million biallelic SNVs, in our collection, 1.89 million could be
confidently genotyped across all individuals. Included within the
larger set are 305.5k coding SNVs (251.5k in the reduced set) with
predicted effect, 127.1k of which introduce nonsynonymous
amino acid changes.

We used these dense SNVs to determine the relationships
among the eight breeding lines (Fig. 4a, Supplementary Table 1,
Supplementary Data 3) by estimating the fractions of their
genomes they shared as identical by descent (IBD). We identified
six parent-child relationships (i.e., IBD1, one haplotype shared
across the entire genome; relatedness coefficients ~0.50) and five
second-degree relationships (i.e., coefficients of ~0.25). All
second-degree relations showed unusually high values of IBD1,
and both first- and second-degree relations shared substantial
IBD2, suggesting a history of recent inbreeding. The relationships
inferred are consistent with available pedigree records (Supple-
mentary Table 1), with the addition of several previously
unrecorded grandparent-grandchild relationships. Although the

Table 3 Significant QTL identified in this study.

Pop. ID Trait QTL peak position n p-value Variant h2 Significance Windowa

TDa1402 Anthracnose susceptibility
(Field 2017)

Chr5: 22,308,637 53 1.69 × 10−4 A/A,A/G,G/G 0.4820 21,931,073
22,825,712

TDa1402 Anthracnose susceptibility
(Field 2018)

Chr19: 8,369,514 49 1.25 × 10−2 T/T,T/C 0.2986 3,732,307
17,565,140

TDa1419 Anthracnose DLA 3-yr mean Chr6: 61,001 243 1.28 × 10−2 C/C,C/T 0.0734 38,157
1,418,849

TDa1419 Dry matter Chr18: 25,069,928 150 2.27 × 10−2 C/C,C/T 0.1020 24,779,355
25,415,124

TDa1419 Oxidation after 30minb Chr18: 26,496,992 151 5.86 × 10−3 T/T,T/A,A/A 0.1367 26,199,630
26,749,589

TDa1419 Oxidation after 180minb Chr18: 26,496,992 151 1.38 × 10−2 T/T,T/A,A/A 0.1188 26,199,630
26,749,589

TDa1427 Oxidation after 30min Chr18: 24,495,033 97 4.52 × 10−6 A/A,A/G 0.3127 24,034,264
24,938,398

TDa1401B Tuber size Chr12: 310,852 53 4.19 × 10−2 T/T,T/C,C/C 0.2894 76,400
489,583

TDa1512 Tuber shape Chr7: 3,115,608 43 3.17 × 10−2 A/A,A/G 0.3406 1,798,899
5,707,988

Pop. ID mapping population identifier, n the number of genotyped and phenotyped progeny used in QTL analysis, p-value empirical significance (α= 0.05) of the genotype-phenotype association at the
peak locus, calculated by Wald statistic-based logistic regression and corrected for family-wise multiple testing by the max(T) method, Variant alleles segregating at QTL peak position, h2 narrow-sense
heritability.
aCalculated as haplotypic linkage disequilibrium ≥0.9 relative to the peak QTL marker.
bSame QTL for both oxidation time points in TDa1419.
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use of highly related parents in breeding programs limits the
diversity of alleles available for selection, we note that, as a
practical matter, yam crosses are limited to genotypes that flower
appropriately, consistently, and profusely.

Unexpectedly, our identity-by-descent analysis shows that
TDa95-310 shares a parent-child relationship to TDa00/00005
and a grandparent-grandchild relationship to TDa01/00039 and
TDa05/00015. This finding implies that TDa95-310 and the
individual TDa98/00150, which appears in the corresponding
position in pedigrees, are clones, or that TDa98/00150 is not a
parent of TDa00/00005. TDa95-310 is a landrace from Cote
d’Ivoire that is likely derived from an accession known as ‘Brazo-
Fuerte’ (‘strong arm’) introduced from Latin America. It is
susceptible to anthracnose and has been used as parent material
for crossing68,69. We find that TDa95-310 is a second-degree

relative of TDa02/00012. Based on the reported pedigree (Fig. 4b),
TDa95-310 must be (1) a parent of either (a) TDa98/01166 or (b)
the unknown pollen parent of TDa02/00012, or (2) TDa95-310 also
shares one of them as parents. Additional genotyping will resolve
this mystery and prevent accidental inbreeding using TDa95-310.

We find extended runs of homozygosity among our eight
sequenced lines, as expected based on their high degree of
relatedness (Fig. 4c). Long blocks of homozygosity generally
stretch across pericentromeric regions, consistent with the low-
recombination rates in these regions (Figs. 1 and 4). Although our
sampling is not random, the extensive homozygosity (and
identity across genotypes) suggests that there may have been
selection for the haplotype on chromosome 20 that appears in a
homozygous state in six of our eight breeding lines, as well as
some other common haplotypes seen in Fig. 4d. The reduced
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29114-w ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2001 | https://doi.org/10.1038/s41467-022-29114-w |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


genetic variation present in these breeding lines suggests a strong
need for the introduction of additional diversity in yam breeding
programs at IITA and other national institutes.

Conversely, we find that multiple genomes contain several long
runs of unusually high heterozygosity (Fig. 4c, Supplementary
Fig. 4). While the typical rate of single-nucleotide heterozygosity
across 100 kb blocks is ~7–10 SNVs per kb (excluding runs of
homozygosity), these highly heterozygous runs have more than
17.5 SNVs/kb (Supplementary Fig. 4c, d, f–g). In cassava and
citrus, blocks of high heterozygosity exceeding 10 SNVs/kb
variation have been demonstrated to be due to interspecific
introgression70,71. The co-cultivation of related yam species
(Supplementary Fig. 15, Supplementary Note 8, Supplementary
Data 4) by growers and breeders suggests that these blocks (some
of which are found overlapping low-recombination-rate pericen-
tromeric regions, e.g., on chromosome 4) are the result of past
interspecific introgression. Since the Pacific yam D. nummularia
is the only other yam species shown to be interfertile with D.
alata20, we speculate that it is the source of introgression into
greater yam breeding lines, possibly before introduction to Africa.
The retention of these hybrid sequences in this germplasm
suggests that they may confer some possible adaptive advantage,
as has been hypothesized in cassava (Manihot esculenta
Crantz)70. Wolfe et al.72 showed that Manihot glaziovii Muell.
Arg. segments introgressed into and maintained as heterozygous
in the cassava genome are associated with preferred traits. In the
future, a comparison of these highly heterozygous regions with
sequences from related Dioscorea spp. should reveal the source of
these interspecific contributions to the greater yam germplasm.

Conclusion. The near-complete and contiguous chromosome-
scale assembly of D. alata reported here, along with the associated
genetic and genomic resources, opens new avenues for improving
this important staple crop. We demonstrated the utility of these
resources by finding eight QTL for anthracnose disease resistance
and tuber quality traits. The genome sequence and associated
resources will facilitate future marker-assisted breeding efforts in
this crop. A major hurdle for breeders is the difficulty of making
successful crosses in D. alata due to lack of flowering, limited seed
set, and differences in flowering time. Genome-enabled methods
such as marker-assisted selection, GWAS, and genomic selection
will allow breeders to make the most out of each cross and use
fewer resources to maintain genotypes that are less likely to be
useful. By analyzing the diversity of popular breeding lines, we
found that they are highly related and, in some cases, have long
runs of homozygosity that reduce the genetic diversity available
for selection but may represent genomic regions fixed for desir-
able traits. Analysis of a broader sampling of African greater yam
germplasm will prove valuable to avoiding inbreeding depression
associated with inbreeding elite lines73. Conversely, we found
regions of presumptive interspecific hybridization, pointing to the
potential value of broader crosses that may enable the transfer of
valuable traits from other yam species while minimizing linkage
drag with genome-assisted selection. Similarly, the genome
sequence also enables the application of gene editing to directly
alter genotypes in a targeted manner, preserving genetic back-
grounds that confer cohorts of desirable traits. The small genome
of D. alata and the advent of rapid long-read technologies open
the door to rapidly assemble additional accessions to discover and
leverage structural variants for breeding. Such variants have been
shown to control important traits, such as plant development74,
and contribute to reproductive isolation75.

Greater yam has a high potential for increased yield and
broader cultivation, with advantages compared with other root-
tuber-banana crops due to its superior nutritious content and low

glycemic index76,77. Greater yam’s ability to grow in tropical and
sub-temperate regions around the world suggests that it is highly
adaptable to its environment and that there may be adaptive traits
(and associated alleles) that could be exploited in different global
contexts. It establishes itself vigorously, is higher yielding than
other domesticated yam species, and is highly tolerant to
marginal, poor soil and drought conditions, and thus likely
nutrient use efficient8. These traits will be valuable assets in a
changing climate. Greater yam is also highly tolerant of the most
significant yam virus, yam mosaic virus19. By leveraging QTL and
genome-wide association for disease resistance and tuber quality,
as well as marker-aided breeding strategies and genome editing,
yam breeders are poised to rapidly generate disease-resistant,
high-performing, farmer-/consumer-preferred, climate-resilient
varieties of greater yam.

Methods
Reference accession. The breeding line TDa95/00328, from the International
Institute of Tropical Agriculture (IITA) yam breeding collection, was chosen as the
D. alata reference genome accession because it is moderately resistant to
anthracnose (a fungal disease caused by Colletotrichum gloeosporioides) and was
confirmed to be diploid by marker segregation analysis23,27. Chromosome number
(2n= 40) was further confirmed through chromosome counting (Supplementary
Note 1, Supplementary Fig. 2).

Genome sequencing. High molecular weight DNA for Pacific Biosciences (PacBio,
Menlo Park, USA) Single-Molecule Real-Time (SMRT) continuous long-read
(CLR) sequencing was isolated as described in Supplementary Note 1. PacBio
library preparation and sequencing were performed at the University of California
Davis Genome and Biomedical Sciences Facility. Three libraries were constructed
as per manufacturer protocol, with fragments smaller than 7, 15, and 20 kb,
respectively, excluded using Blue Pippin. In total, one RSII and 20 Sequel
SMRT cells of CLR data were generated for a combined 235× sequence depth. Half
of the 112.4 Gb of generated bases were sequenced in reads 14.5 kb or longer.

For HiC chromatin conformation capture, suspensions of intact nuclei from D.
alata (TDa95/00328) were prepared from young leaves and apical parts of the stem
according to ref. 78. at the Institute of Experimental Botany, Olomouc, Czech
Republic, with modifications as described in Supplementary Note 1. These nuclei
were sent to Dovetail Genomics for HiC library preparation79, which were
sequenced on an Illumina HiSeq 4000 to produce 358.5 million 151 bp paired-
end reads.

For genome sequence polishing, a 625 bp insert-size Illumina TruSeq library
was made and sequenced on a HiSeq 2500 at UC Berkeley’s Vincent J. Coates
Genomics Sequencing Lab (VCGSL), yielding 131 million 251 bp paired reads
(137× depth). For contig linking, three Nextera mate-pair libraries (insert sizes
~2.5 kb, 6 kb, and 9 kb) were prepared and sequenced as 151 bp paired-end reads
on a HiSeq 4000 at the UC Davis Genome and Biomedical Sciences Facility. More
details are described in Supplementary Note 1. A listing of all TDa95/
00328 sequencing data, and corresponding NCBI Sequence Read Archive (SRA)
accession numbers, may be found in Supplementary Data 1.

Genome assembly. We assembled the D. alata genome sequence with Canu80

v1.7-221-gb5bffcf from the longest 110× of PacBio CLR reads (50.228 Gb in reads
19.8 kb or longer). Contigs were filtered down to a single mosaic haplotype in
JuiceBox81,82 v1.9.0, considering median contig depth (Supplementary Fig. 3),
sequence similarity, and HiC contacts. Non-redundant contigs were scaffolded into
chromosomes using SSPACE83 v3 and 3D-DNA84 commit 2796c3b. Misassemblies
were corrected manually with the aid of genetic maps and JuiceBox HiC visuali-
zation. The assembly was polished twice with Arrow85 v2.2.2 (SMRT Link
v6.0.0.47841) followed by two rounds of Illumina-based polishing with FreeBayes86

v1.1.0-54-g49413aa and custom scripts (Supplementary Note 1).

DArTseq genotyping. DNA was isolated at IITA and NRCRI from their respective
mapping populations and parents using modified CTAB methods (Supplementary
Note 2). DNA samples were genotyped by Integrated Genotyping Service and
Support (IGSS, BecA-ILRI hub, Nairobi, Kenya) or DArT (Canberra, Australia)
using the ‘high-density’ DArTseq reduced-representation method. DArTseq gen-
otype datasets were deposited in Dryad [https://doi.org/10.6078/D1DQ54]87. Lists
of sequence data used for DArTseq genotyping, and corresponding NCBI
Sequencing Read Archive (SRA) accession numbers, are provided in Supplemen-
tary Data 1.

Genetic linkage mapping. DArTseq genotyping datasets were mapped to the v2
genome sequence, then filtered for a minimum 90% genotyping completeness and
F1 Mendelian segregation via χ2 goodness-of-fit tests (α= 1 × 10−2) on allele and
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genotype frequencies using MapTK88 v1.4.1-11-g19a5f3a (https://bitbucket.org/
rokhsar-lab/gbs-analysis) and VCFtools89. Half-sibs, off-types, and sample errors
were detected via clustering as in ref. 88. and removed. Parental genotypes from one
dataset were substituted when a sample by the same name was found to be
inconsistent in another. Genotypes were phased and imputed using
AlphaFamImpute90 v0.1 and parent-averaged linkage maps constructed in
JoinMap91,92 v4.1 with the maximum-likelihood mapping function for cross-
pollinated populations, which were then integrated into a composite map using
LPmerge93 v1.7. Further detail regarding genetic linkage mapping can be found in
Supplementary Table 2 and Supplementary Note 2. All linkage maps were
deposited in Dryad [https://doi.org/10.6078/D1DQ54]87.

RNA sequencing. RNA was extracted at ICRAF from 12 tissues from a single
TDa95/00328 plant grown onsite in Nairobi, Kenya. Tissues included leaf petiole,
roots, various stages of leaves (initial sprouting leaf, leaf bud, young leaf, semi-
matured leaf, matured leaf, fifth leaf), bark, stem, first internode, and middle vine as
described in Supplementary Note 3. RNA samples were pooled for sequencing by
two technologies.

Illumina RNA-seq libraries were prepared using the TruSeq stranded mRNA
preparation kit (Illumina cat# 20020594) and sequenced at the Agricultural
Research Council Biotechnology Platform (ARC-BTP) in Pretoria, South Africa on
an Illumina HiSeq 2500 as 125 bp paired ends (SRA: SRR13683865 [https://
www.ncbi.nlm.nih.gov/sra/SRR13683865]).

Oxford Nanopore Technologies (ONT) Direct-RNA Sequencing (Nanopore
DRS) and data processing were performed at the University of Dundee, Dundee,
UK. The Nanopore DRS library was prepared using the SQK-RNA001 kit
(ONT)94, using 5 μg of total RNA as input for library preparation, and sequenced
on R9.4 SpotON Flow Cells (ONT) using a 48 h runtime. Nanopore DRS reads
(SRA: SRR13683864) were base-called using Guppy v2.3.1 (ONT), then corrected
using proovread95 v2.14.1 without sampling. Transcript assemblies were generated
with Pinfish (ONT) v0.1.0 from corrected reads aligned to the v2 genome sequence
with Minimap2 v2.8 (ref. 96). More details on Nanopore transcriptome sequencing
are in Supplementary Note 3.

Protein-coding gene annotation. Transcript assemblies (TAs) were constructed
with PERTRAN97 v2.4 from 107M pairs of Illumina RNA-seq reads, combining
our data with those from Wu et al.98 (SRA: SRR1518381 and SRR1518382) and
Sarah et al.99 (SRA: SRR3938623) along with 44k 454 ESTs from Narina et al.68

(SRA: SAMN00169815, SAMN00169801, SAMN00169798). A merged set of
86,399 TAs were constructed by PASA100 v2.0.2 from the above RNA-seq TAs
along with 53k assemblies from corrected Nanopore DRS reads, and 18 full-length
cDNAs collected from NCBI.

Protein-coding genes were predicted with the DOE-JGI Integrated Gene Call101

(IGC) v5.0 annotation pipeline, which integrates TA evidence and ab initio gene
predictions. Briefly, gene loci were determined by TA alignments and/or
EXONERATE102 v2.4.0 peptide alignments from Arabidopsis thaliana39 TAIR10,
Glycine max103 Wm82.a4.v1, Sorghum bicolor104 v3.1.1, Oryza sativa105 v7.0,
Setaria viridis106 v2.1, Amborella trichopoda107 v1.0, Zostera marina108 v2.2, Musa
acuminata109 v1, Ananas comosus51 v3, and Vitis vinifera110 v2.1 proteomes
obtained from Phytozome111 v13 (https://phytozome-next.jgi.doe.gov) and Swiss-
Prot112 proteins (2018, release 11). Gene models were predicted using
FGENESH+ 113 v3.1.1, FGENESH_EST v2.6, EXONERATE v2.4.0, PASA (v2.0.2)
assembly-derived ORFs, and AUGUSTUS v3.3.3 via BRAKER1 v1.9 (ref. 114.).
After selecting the best-scoring predictions at each locus (Supplementary Note 3),
UTRs and alternative transcripts were added with PASA. Functional annotations
were predicted with InterProScan115 v5.17-56.0. The annotation completeness of
this and other Dioscoreaceae species (Supplementary Table 5) were measured using
BUSCO31 v3.0.2-11-g1554283 with the Embryophyta OrthoDB32 v10 database.

Genomic repeat annotation. Repeat annotation was performed twice (see Sup-
plementary Note 3) with RepeatMasker116 v4.1.1. The initial round annotated de
novo repeats inferred from the preliminary v1 assembly by RepeatModeler117

v1.0.11, combined with Dioscorea repeats deposited in RepBase118. The second
round used a repeat library inferred by RepeatModeler v2.0.1 (-LTRstruct) from
the more complete v2 genome sequence.

Comparisons with other monocot genomes. Orthologous genes were clustered
with OrthoFinder119 v2.4.1 across the available assembled Dioscoreaceae spe-
cies: D. alata, D. rotundata21 (GCA_009730915.1), D. dumetorum34

(GCA_902712375.1), D. zingiberensis22 (GCA_014060945.1), and Trichopus
zeylanicus35 (GCA_005019695.1). This procedure produced 5,454 clusters of genes
in strict 1:1:1:1 correspondence among the Dioscorea species of which 99.9%
(n= 5451), 90.5% (n= 4937), and 99.1% (n= 5404) were localized to
chromosome-scale scaffolds in D. alata, D. rotundata, and D. zingiberensis,
respectively. We also used OrthoFinder to compare a broader set of monocots (D.
alata, D. rotundata, D. dumetorum, D. zingiberensis, T. zeylanicus, Xerophyta
viscosa120 (GCA_002076135.1), Apostasia shenzhenica121 (GCA_002786265.1),
Dendrobium catenatum122 (GCF_001605985.2), Asparagus officinalis53

(GCF_001876935.1), Elaeis guineensis52 (GCF_000442705.1), Phoenix

dactylifera123 (GCF_000413155.1), Musa acuminata109 (GCF_000313855.2), Oriza
sativa124 (GCF_001433935.1), Zea mays125 (GCF_000005005.2), Ananas
comosus51 (GCF_001540865.1), Spirodela polyrhiza54,126 (GCA_000504445.1,
GCA_001981405.1), Zostera marina108 (GCA_001185155.1)) with Arabidopsis
thaliana39,127 (GCF_000001735.4) and Amborella trichopoda107

(GCF_000471905.2) as outgroups. These results are presented graphically in
Supplementary Fig. 8 using the ClusterVenn128 online tool (https://
orthovenn2.bioinfotoolkits.net/cluster-venn). See Supplementary Note 3 and Sup-
plementary Data 4 for more detail.

Chromosome landscape, Rabl chromatin structure, and centromere estimates.
The A/B compartment structure (Supplementary Fig. 7) for each chromosome was
inferred at 100 kb resolution with Knight-Ruiz (KR)-balanced MapQ30 intra-
chromosomal HiC count matrices using a custom script (call-compartments
v0.1.2-67-g18fff4a; https://bitbucket.org/bredeson/artisanal). Centromeric positions
were estimated in JuiceBox (v1.9.0) following the principles described by Var-
oquaux et al.129. Rabl chromatin structure (Supplementary Note 4) was extracted in
R130 v3.5.3 using the prcomp function (chr-structure.R v1.0; https://github.com/
bredeson/Dioscorea-alata-genomics) on KR-balanced MapQ30 inter-chromosomal
HiC count matrices, with chromosome 2 as the reference comparator. Pearson’s
correlations (r) between gene count, low-complexity and transposable element
repeat densities, recombination rate, and A/B compartment domain status were
computed using 500 kb non-overlapping windows with BEDtools131 v2.28.0 and
R130 v3.5.3 (Supplementary Note 4). Putative centromere sequences and loci
(Supplementary Data 2) were determined using a combination of HiC and tandem-
repeat finding approaches (Supplementary Note 4).

Synteny and comparative genomics. We used BLASTP132,133 (BLAST+ v2.10.0)
to search for homologous proteins between Dioscorea alata and each comparator
species: Ananas comosus51 (GCF_001540865.1), D. rotundata21

(GCA_009730915.1), D. dumetorum34, D. zingiberensis22 (GCA_014060945.1),
Elaeis guineensis52 (GCF_000442705.1), Spirodela polyrhiza54,126

(GCA_000504445.1, GCA_001981405.1), and Trichopus zeylanicus35

(GCA_005019695.1). DIALIGN-TX134 v1.0.2 and the kaks function from the
SeqinR135 v3.6-1 R130 (v3.5.3) package were used to calculate synonymous sub-
stitution (KS) rates. Runs of collinear loci (Supplementary Data 2) were inferred
using custom filtering and clustering scripts (run-collinearity.sh v1.0, https://
github.com/bredeson/Dioscorea-alata-genomics; cluster-collinear-bedpe v0.1.2-67-
g18fff4a, https://bitbucket.org/bredeson/artisanal). See Supplementary Note 5 for
more details. All ribbon diagrams were generated with the jcvi.graphics.karyotype
module in MCscan136 v1.0.14-0-g58b7710b.

Mapping populations at IITA. Phenotyping of five mapping populations was
performed at IITA from 2016–2019. In 2016, mapping populations were planted in
single pots and grown in the screenhouse for seed tuber multiplication and
screening of anthracnose disease in a controlled environment. In 2017, individual
mini-tubers of each mapping population were pre-planted in pots to ensure ger-
mination, and one-month-old seedlings were transplanted in the field using a
ridge-and-furrow system. Land preparation, weeding, staking and harvesting were
carried out following standard field operating protocol for yam137. In 2018 and
2019, harvested tubers were cut into mini-sets of 100 g each, treated with pesticide
to prevent rotting, and planted in the field as above. More detail on the planting
scheme used at IITA may be found in Supplementary Note 6.

Phenotyping for anthracnose disease. Populations were assessed for yam
anthracnose disease (YAD) at the International Institute for Tropical Agriculture
(IITA, Ibadan, Nigeria) and the National Root Crops Research Institute (NRCRI,
Umudike, Nigeria). More detailed descriptions of phenotyping for YAD may be
found in Supplementary Note 6; all YAD phenotyping datasets were deposited in
Dryad [https://doi.org/10.6078/D1DQ54]87.

For the five IITA populations (TDa1401, TDa1402, TDa1403, TDa1419 and
TDa1427), each plant was visually scored in the field in 2017 and 2018 for YAD
severity at 3 months after planting (MAP) and 6 MAP using a 1–5 scale as follows:
Score 1=No symptoms, Score 2= 1–25%, Score 3= 25–50%, Score 4= 50–75%,
Score 5 ≥ 75%. Detached leaf assays (DLA) were performed at IITA on plants
grown in the screenhouse in 2016, and on plants grown in the field in 2017 and
2018, following a modified protocol of Green et al.138 and Nwadili et al.139.

At NRCRI, site-specific C. gloeosporioides isolates were collected and evaluated,
as described in Supplementary Note 6. The most virulent isolate was used for
anthracnose severity evaluation of NRCRI D. alata mapping populations using
DLA139.

Phenotyping for post-harvest tuber traits. Tuber dry matter content was phe-
notyped at IITA. After harvest, healthy yam tubers were sampled in each repli-
cation for dry matter determination. The tubers of each genotype were cleaned
with water to remove soil particles. Thereafter, the tubers were peeled and grated
for easy oven drying; 100 g of freshly grated tuber flesh sample was weighed, put
into a Kraft paper bag, and dried at 105 °C for 16 h. After drying, the weight of each
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sample was recorded and the dry matter content was determined using Eq. 1:

%Drymatter content ¼ 100 � weight of dry sample ðgÞ
weight of fresh sample ðgÞ ð1Þ

Tuber flesh color and oxidation/oxidative browning were phenotyped at IITA.
After harvest, one well-developed and mature representative tuber was sampled in
each replication. The sampled tuber was peeled, cut, and chipped with a hand
chipper to get small thickness size pieces. A chromameter (CR-410, Konica
Minolta, Japan) was used to read the total color of sampled pieces placed on a petri
dish immediately and exposure to air at 0, 30, and 180 min. The lightness (L*), red/
green coordinate (a*), and yellow/blue coordinate (b*) parameters were recorded
for each chromameter reading for the determination of the total color difference. A
reference white porcelain tile was used to calibrate the chromameter before each
determination140. Tuber whiteness was calculated with Eq. 2:

f L ¼ L�2

L�2 þ a�2 þ b�2
ð2Þ

where ΔL*= difference in lightness and darkness ([+]= lighter, [−]= darker),
Δa*= difference in red and green ([+]= redder, [−]= greener), and
Δb*= difference in yellow and blue ([+]= yellower, [−]= bluer) (http://docs-
hoffmann.de/cielab03022003.pdf).

Tuber flesh oxidation was estimated from the total variation from the difference
in the final and initial color reading, as in Eq. 3:

Tuber flesh oxidation ¼ Efinal � Einitial ð3Þ
where ΔEfinal= color reader value at the final time (30 min) and ΔEinitial= Initial
color reader value (at 0 min).

Tubers were evaluated post-harvest at NRCRI. Of the three populations
evaluated at NRCRI, 172 progeny survived. As soon as the yam tubers were
harvested, eight traits were assessed using the descriptors from Asfaw137: presence
or absence of corm (CORM: 0= absent; 1= present), the ability of corm to
separate (CORSEP: 0= no; 1= yes), type of corm (CORTYP: 1= regular;
2= transversally elongated; 3= branched), tuber shape (TBRS: 1= spherical/
round; 2= oval; 3= cylindrical; 5= irregular), tuber size (TBRSZ: 1= small,
length less than 15 cm; 2=medium, length between 15 and 25 cm; 3= big, length
longer than 25 cm), tuber surface texture (TBRST: 1= smooth; 2= rough), roots
on tuber (RTBS: 0= no roots; 2= few; 3=many) and position of roots on tuber
(PRTBS: 1= lower; 2=middle; 3= upper; 4= entire tuber). Tuber trait
phenotyping datasets for all mapping populations were deposited in Dryad [https://
doi.org/10.6078/D1DQ54]87.

QTL analysis. QTL association analyses integrated linkage maps, imputed genotype
data, and phenotype data into Binary PED files using PLINK141,142 v1.90b6.16. Only
progeny samples with both genotype and phenotype data were retained per trait.
Some traits were initially scored using a discrete 0–2 system, which PLINK assumes
are missing/case/control phenotypes; these trait values were shifted out of the 0–2
range before analysis by adding an offset of 1 or 2 to all values (depending on initial
data range). An independent QTL association analysis was performed for each trait
using logistic regression. Per-locus Wald statistic p-values were adjusted for multiple
testing by max(T) correction141,143 with 1 × 106 phenotype label-swap permutations.
A locus was considered significant if the empirical max(T)-corrected p-value was less
than α= 0.05. Two dry matter phenotype measurements were excluded from the
TDa1419 population: TDa1419_485 (a likely typographical error in data collection)
and TDa1419_142 (an extreme outlier value).

For each identified QTL, an effect plot was generated to determine the
dominance pattern and estimate narrow-sense heritability (h2) at the peak marker.
Effect plots and h2 were calculated as described by Broman and Sen144 (pg. 122)
using a custom R130 script (plot-qtl-gxp.R v1.0, https://github.com/bredeson/
Dioscorea-alata-genomics). The effect status (i.e., dominance) for chromosomes 6
and 19 anthracnose QTL could not be determined because the alleles at these loci
are segregated in pseudo-testcross configurations. The interval around each QTL
peak (Table 3) was determined by expanding the interval boundaries upstream and
downstream of the peak marker until another marker with linkage disequilibrium
(LD) below 0.9 was encountered (plot-qtl-ld.R v1.0, https://github.com/bredeson/
Dioscorea-alata-genomics). The gene loci contained within these intervals, and
their functional annotations, are provided in Dryad [https://doi.org/10.6078/
D1DQ54]87. In addition to the predicted functional annotations (Supplementary
Note 3) for each D. alata gene, protein descriptions were included from the best
BLASTP133 (-seg yes -lcase_masking -soft_masking true -evalue 1e-6) hits to the
NCBI RefSeq proteomes (release 207, 2021-07-15) of Arabidopsis thaliana,
Gossypium hirsutum, Ipomoea batatas, Malus domestica, Medicago truncatula,
Musa acuminata, Nicotiana tabacum, Oryza sativa Japonica, Solanum
lycopersicum, Solanum tuberosum, Vitis vinifera, and Zea mays when searching for
causal gene candidates within QTL intervals.

WGS Illumina sequencing. DNA samples from the breeding lines listed in Sup-
plementary Table 1 were isolated at IITA (Supplementary Note 7). TruSeq Illumina
libraries were constructed and sequenced at the VCGSL. Inferred insert sizes
ranged from 247–876 bp. These libraries were sequenced on HiSeq 2500 or HiSeq
4000 with reading lengths ranging from 150–251 bp, yielding combined sample

depths of 19–230×. Supplementary Data 1 lists all Illumina sequence data from our
breeding lines, including external data, and accompanying summary statistics.

WGS variant calling. Single-nucleotide variants (SNVs) were called from the
whole-genome resequencing datasets listed in Supplementary Data 1. Briefly,
Illumina reads were screened for TruSeq adapters with fastq-mcf (ea-utils145 tool
suite) v1.04.807-18-gbd148d4, then aligned with BWA-MEM146 v0.7.17-11-
g20d0a13 to a TDa95/00328 v2 genome index containing D. alata plastid (Gen-
Bank: MZ848367.1 [https://www.ncbi.nlm.nih.gov/nuccore/MZ848367.1]) and
mitochondrial (GenBank: OK106275.1 [https://www.ncbi.nlm.nih.gov/nuccore/
OK106275.1]) sequences and a Pseudomonas fluorescens chromosome (GenBank:
CP081968.1 [https://www.ncbi.nlm.nih.gov/nuccore/CP081968.1]) as bait for
contaminant reads. BAM files were processed with SAMtools147 v1.9-93-g0ca96a4
to fix mate information, mark duplicates, sort, merge, and filter for properly-paired
reads. Initial SNVs and indels were called with the Genome Analysis ToolKit148

(GATK; v3.8-1-0-gf15c1c3ef) HaplotypeCaller and GenotypeGVCFs tools. False-
positive variant and genotype calls were filtered using individual-specific mini-
mum- and maximum-depth cutoffs, allele-balance binomial test thresholds
(α= 0.001; Supplementary Fig. 14), a read depth mask, and annotated repeat
masks. See Supplementary Note 7 for a more complete description of the filtering
protocol used. Only biallelic SNVs were used in downstream analyses and effect
predictions were annotated with SnpEff149 v5.0.c2020-11-25.

WGS population analyses. Using 1.89 million SNVs with 75% or more of indivi-
duals genotyped, pairwise genome-wide relatedness estimates were obtained with
VCFtools89 v0.1.16-16-g954e607. The resulting relatedness network and origination
year encoded in each sample’s identifier were used to verify IITA pedigrees. The
intrinsic heterozygosity and autozygosity of each individual, as well as the pairwise
segmental (5000 SNV windows, 1000 SNV step) identity-by-descent (IBD) of each,
were estimated with custom scripts (snvrate and IBD tools v1.0-26-g4cf73ab, https://
bitbucket.org/rokhsar-lab/wgs-analysis). A 100 kb sliding window (10 kb step) was
called autozygous if the rate of intrinsic heterozygosity was less than 2 × 10−4. This
threshold was determined empirically (Supplementary Fig. 4, Supplementary Note 7).

Mitochondrial and plastid sequence assemblies and phylogenetics. Mito-
chondrial and plastid DNA sequences were assembled using de novo and com-
parative methods (Supplementary Note 8). The IboSweet3 D. dumetorum plastid
was extracted from the Siadjeu et al.34 assembly. Our Dioscoreaceae DNA phy-
logeny was built from plastid long single-copy regions using MAFFT150,151 FFT-
NS-i v7.427 (--6merpair --maxiterate 1000), Gblocks v0.91b, and PhyML152

v3.3.20190909 (--leave_duplicates --freerates -a e -d nt -b 1000 -f m -o tlr -t e -v e).
The monocot plastid phylogeny was constructed using OrthoFinder119,153,154

v2.4.1 (MAFFT v7.427 alignment and IQ-TREE155 v2.0.3 phylogenetic recon-
struction) single-copy orthologs. All trees were visualized with FigTree v1.4.4
(https://github.com/rambaut/figtree).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
A reporting summary for this article is available as a Supplementary Information file. The
genome sequence, annotation, and SNP data are browsable at Phytozome [https://
phytozome-next.jgi.doe.gov/info/Dalata_v2_1] or YamBase [https://yambase.org/
organism/Dioscorea_alata/genome]. The D. alata TDa95/00328 nuclear genome
(GCA_020875875.1), transcriptome (GJIX00000000.1), plastid (MZ848367.1), and
mitochondrion (OK106275.1) assemblies, and Pseudomonas fluorescens chromosome
(CP081968.1) were deposited in the NCBI GenBank database. D. rotundata TDr96_F1
and D. dumetorum IboSweet3 plastid sequences were also deposited in the NCBI
GenBank database under accessions MZ848368.1 and MZ848369.1, respectively. All
sequencing read data generated for this work were deposited in the NCBI Sequence Read
Archive (SRA) under BioProject PRJNA666450; see Supplementary Data 1 for individual
sample SRA metadata. The genetic linkage maps, phenotype datasets, and DArTseq
genotype datasets for all populations, as well as functional annotations for all genes
within QTL intervals, were deposited in Dryad [https://doi.org/10.6078/D1DQ54]87.
Source Data files are provided with this work. Source data are provided with this paper.

Code availability
Analysis scripts used throughout this work are available at Github [https://github.com/
bredeson/Dioscorea-alata-genomics] (tag ‘v1.0’) and Bitbucket: [https://bitbucket.org/
rokhsar-lab/wgs-analysis] (v1.0-26-g4cf73ab), [https://bitbucket.org/rokhsar-lab/gbs-
analysis] (v1.4.1-11-g19a5f3a), and [https://bitbucket.org/bredeson/artisanal] (v0.1.2-67-
g18fff4a).
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