1,173 research outputs found

    A Field Range Bound for General Single-Field Inflation

    Full text link
    We explore the consequences of a detection of primordial tensor fluctuations for general single-field models of inflation. Using the effective theory of inflation, we propose a generalization of the Lyth bound. Our bound applies to all single-field models with two-derivative kinetic terms for the scalar fluctuations and is always stronger than the corresponding bound for slow-roll models. This shows that non-trivial dynamics can't evade the Lyth bound. We also present a weaker, but completely universal bound that holds whenever the Null Energy Condition (NEC) is satisfied at horizon crossing.Comment: 16 page

    All-Optical Atom Trap as a Target for MOTRIMS-Like Collision Experiments

    Get PDF
    Momentum-resolved scattering experiments with laser-cooled atomic targets have been performed since almost two decades with magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) setups. Compared to experiments with gas-jet targets, MOTRIMS features significantly lower target temperatures allowing for an excellent recoil ion momentum resolution. However, the coincident and momentum-resolved detection of electrons was long rendered impossible due to incompatible magnetic field requirements. Here we report on an experimental approach which is based on an all-optical 6Liatom trap that--in contrast to magneto-optical traps--does not require magnetic field gradients in the trapping region. Atom temperatures of about 2 mK and number densities up to 109 cm−3 make this trap ideally suited for momentum-resolved electron-ion coincidence experiments. The overall configuration of the trap is very similar to conventional magneto-optical traps. It mainly requires small modifications of laser beam geometries and polarization which makes it easily implementable in other existing MOTRIMS experiments

    Global standards of Constitutional law : epistemology and methodology

    Get PDF
    Just as it led the philosophy of science to gravitate around scientific practice, the abandonment of all foundationalist aspirations has already begun making political philosophy into an attentive observer of the new ways in which constitutional law is practiced. Yet paradoxically, lawyers and legal scholars are not those who understand this the most clearly. Beyond analyzing the jurisprudence that has emerged from the expansion of constitutional justice, and taking into account the development of international and regional law, the ongoing globalization of constitutional law requires comparing the constitutional laws of individual nations. Following Waldron, the product of this new legal science can be considered as ius gentium. This legal science is not as well established as one might like to think. But it can be developed on the grounds of the practice that consists in ascertaining standards. As abstract types of best “practices” (and especially norms) of constitutional law from around the world, these are only a source of law in a substantive, not a formal, sense. They thus belong to what I should like to call a “second order legal positivity.” In this article I will undertake, both at a methodological and an epistemological level, the development of a model for ascertaining global standards of constitutional law

    Sterile neutrino production via active-sterile oscillations: the quantum Zeno effect

    Get PDF
    We study several aspects of the kinetic approach to sterile neutrino production via active-sterile mixing. We obtain the neutrino propagator in the medium including self-energy corrections up to O(GF2)\mathcal{O}(G^2_F), from which we extract the dispersion relations and damping rates of the propagating modes. The dispersion relations are the usual ones in terms of the index of refraction in the medium, and the damping rates are Γ1(k)=Γaa(k)cos2θm(k);Γ2(k)=Γaa(k)sin2θm(k)\Gamma_1(k) = \Gamma_{aa}(k) \cos^2\theta_m(k); \Gamma_2(k) = \Gamma_{aa}(k) \sin^2\theta_m(k) where Γaa(k)GF2kT4\Gamma_{aa}(k)\propto G^2_F k T^4 is the active neutrino scattering rate and θm(k)\theta_m(k) is the mixing angle in the medium. We provide a generalization of the transition probability in the \emph{medium from expectation values in the density matrix}: Pas(t)=sin22θm4[eΓ1t+eΓ2t2e1/2(Γ1+Γ2)tcos(ΔEt)] P_{a\to s}(t) = \frac{\sin^22\theta_m}{4}[e^{-\Gamma_1t} + e^{-\Gamma_2 t}-2e^{-{1/2}(\Gamma_1+\Gamma_2)t} \cos\big(\Delta E t\big)] and study the conditions for its quantum Zeno suppression directly in real time. We find the general conditions for quantum Zeno suppression, which for mskeVm_s\sim \textrm{keV} sterile neutrinos with sin2θ103\sin2\theta \lesssim 10^{-3} \emph{may only be} fulfilled near an MSW resonance. We discuss the implications for sterile neutrino production and argue that in the early Universe the wide separation of relaxation scales far away from MSW resonances suggests the breakdown of the current kinetic approach.Comment: version to appear in JHE
    corecore