10 research outputs found

    Chiral criticality in doped Mn1−y_{1-y}Fey_ySi compounds

    Full text link
    The critical spin fluctuations in doped compounds Mn1−y_{1-y}Fey_ySi have been studied by means of ac-susceptibility measurements, polarized neutron small angle scattering and spin echo spectroscopy. It is shown that these compounds undergo the transition from the paramagnetic to helimagnetic phase through continuous, yet well distinguishable crossovers: (i) from paramagnetic to partially chiral, (ii) from partially chiral to highly chiral fluctuating state. The crossover points are identified on the basis of combined analysis of the temperature dependence of ac-susceptibility and polarized SANS data. The whole transition is marked by two inflection point of the temperature dependence of ac-susceptibility: the upper one corresponds to the crossover to partially chiral state at T∗T^*, where the inverse correlation length κ≈2k\kappa \approx 2 k, the lower one corresponds to the transition to the spin helix structure. The intermediate crossover to the highly chiral phase is observed at the inflection point TkT_k of the first derivative of ac-susceptibility, where κ≈k\kappa \approx k. The temperature crossovers to the highly chiral fluctuating state is associated with the enhancing influence of the Dzyaloshinskii-Moria interaction close to TcT_c.Comment: 5 pages, 5 figures, 1 table, 13 cite

    Observation of low energy dispersive modes in un- derdoped (La, Nd) 2−x Sr x CuO 4

    Get PDF
    We find excitations lower in energy than known phonon modes in underdoped La2−x_{2-x}Srx_xCuO4+δ_{4+\delta} (x=0.08), with both inelastic X-Ray scattering (IXS) and inelastic neutron scattering (INS). A non dispersive excitation at 9 meV is identified and is also seen by INS in (La,Nd)2−x_{2-x}Srx_xCuO4+δ_{4+\delta}, with 40%\% Nd substitution. INS also identifies a still lower energy dispersive mode at low q in the Nd free sample. These modes are clearly distinct from the longitudinal acoustic phonon and correspond in energy to the Zone Centre modes measured by optical spectroscopy and associated with stripe dynamics

    Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides

    No full text
    The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism, which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors

    Observation of low energy dispersive modes in un- derdoped (La, Nd) 2−x Sr x CuO 4

    No full text
    We find excitations lower in energy than known phonon modes in underdoped La2−x_{2-x}Srx_xCuO4+δ_{4+\delta} (x=0.08), with both inelastic X-Ray scattering (IXS) and inelastic neutron scattering (INS). A non dispersive excitation at 9 meV is identified and is also seen by INS in (La,Nd)2−x_{2-x}Srx_xCuO4+δ_{4+\delta}, with 40%\% Nd substitution. INS also identifies a still lower energy dispersive mode at low q in the Nd free sample. These modes are clearly distinct from the longitudinal acoustic phonon and correspond in energy to the Zone Centre modes measured by optical spectroscopy and associated with stripe dynamics
    corecore