288 research outputs found

    SDSS J092455.87+021924.9: an Interesting Gravitationally Lensed Quasar from the Sloan Digital Sky Survey

    Full text link
    We report the discovery of a new gravitationally lensed quasar from the Sloan Digital Sky Survey, SDSS J092455.87+021924.9 (SDSS J0924+0219). This object was selected from among known SDSS quasars by an algorithm that was designed to select another known SDSS lensed quasar (SDSS 1226-0006A,B). Five separate components, three of which are unresolved, are identified in photometric follow-up observations obtained with the Magellan Consortium's 6.5m Walter Baade telescope at Las Campanas Observatory. Two of the unresolved components (designated A and B) are confirmed to be quasars with z=1.524; the velocity difference is less than 100 km sec^{-1} according to spectra taken with the W. M. Keck Observatory's Keck II telescope on Mauna Kea. A third stellar component, designated C, has the colors of a quasar with redshift similar to components A and B. The maximum separation of the point sources is 1.78". The other two sources, designated G and D, are resolved. Component G appears to be the best candidate for the lensing galaxy. Although component D is near the expected position of the fourth lensed component in a four image lens system, its properties are not consistent with being the image of a quasar at z~1.5. Nevertheless, the identical redshifts of components A and B and the presence of component C strongly suggest that this object is a gravitational lens. Our observations support the idea that a foreground object reddens the fourth lensed component and that another unmodeled effect (such as micro- or milli-lensing) demagnificates it, but we cannot rule out the possibility that SDSS0924+0219 is an example of the relatively rare class of ``three component'' lens systems.Comment: 24 pages, 6 figures, accepted by A

    Sloan Digital Sky Survey Multicolor Observations of GRB010222

    Get PDF
    The discovery of an optical counterpart to GRB010222 (detected by BeppoSAX; Piro 2001) was announced 4.4 hrs after the burst by Henden (2001a). The Sloan Digital Sky Survey's 0.5m photometric telescope (PT) and 2.5m survey telescope were used to observe the afterglow of GRB010222 starting 4.8 hours after the GRB. The 0.5m PT observed the afterglow in five, 300 sec g' band exposures over the course of half an hour, measuring a temporal decay rate in this short period of F_nu \propto t^{-1.0+/-0.5}. The 2.5m camera imaged the counterpart nearly simultaneously in five filters (u' g' r' i' z'), with r' = 18.74+/-0.02 at 12:10 UT. These multicolor observations, corrected for reddening and the afterglow's temporal decay, are well fit by the power-law F_nu \propto nu^{-0.90+/-0.03} with the exception of the u' band UV flux which is 20% below this slope. We examine possible interpretations of this spectral shape, including source extinction in a star forming region.Comment: 8 pages, 4 figures, accepted for publication in ApJ. Two figures added, minor changes to text in this draft. Related material can be found at: http://sdss.fnal.gov:8000/grb

    Variants in the estrogen receptor alpha gene and its mRNA contribute to risk for schizophrenia

    Get PDF
    Estrogen modifies human emotion and cognition and impacts symptoms of schizophrenia. We hypothesized that the variation in the estrogen receptor alpha (ESR1) gene and cortical ESR1 mRNA is associated with schizophrenia. In a small case–control genetic association analysis of postmortem brain tissue, genotype CC (rs2234693) and haplotypes containing the C allele of a single-nucleotide polymorphism (SNP) in intron1 (PvuII) were more frequent in African American schizophrenics (P = 0.01–0.001). In a follow-up family-based association analysis, we found overtransmission of PvuII allele C and a PvuII C-containing haplotype (P = 0.01–0.03) to African American and Caucasian patients with schizophrenia. Schizophrenics with the ‘at risk’ PvuII genotype had lower ESR1 mRNA levels in the frontal cortex. Eighteen ESR1 splice variants and decreased frequencies of the wild-type ESR1 mRNA were detected in schizophrenia. In one patient, a unique ESR1 transcript with a genomic insert encoding a premature stop codon and a truncated ESR1 protein lacking most of the estrogen binding domain was the only transcript detected. Using a luciferase assay, we found that mRNA encoding a truncated ESR1 significantly attenuates gene expression at estrogen-response elements demonstrating a dominant negative function. An intron 6 SNP [rs2273207(G)] was associated with an ESR1 splice variant missing exon seven. The T allele of another intron 6 SNP was part of a 3′ haplotype less common in schizophrenia [rs2273206(T), rs2273207(G), rs2228480(G)]. Thus, the variation in the ESR1 gene is associated with schizophrenia and the mechanism of this association may involve alternative gene regulation and transcript processing

    A Lyman-alpha-only AGN from the Sloan Digital Sky Survey

    Full text link
    The Sloan Digital Sky Survey has discovered a z=2.4917 radio-loud active galactic nucleus (AGN) with a luminous, variable, low-polarization UV continuum, H I two-photon emission, and a moderately broad Lyman-alpha line (FWHM = 1430 km/s) but without obvious metal-line emission. SDSS J113658.36+024220.1 does have associated metal-line absorption in three distinct, narrow systems spanning a velocity range of 2710 km/s. Despite certain spectral similarities, SDSS J1136+0242 is not a Lyman-break galaxy. Instead, the Ly-alpha and two-photon emission can be attributed to an extended, low-metallicity narrow-line region. The unpolarized continuum argues that we see SDSS J1136+0242 very close to the axis of any ionization cone present. We can conceive of two plausible explanations for why we see a strong UV continuum but no broad-line emission in this `face-on radio galaxy' model for SDSS J1136+0242: the continuum could be relativistically beamed synchrotron emission which swamps the broad-line emission; or, more likely, SDSS J1136+0242 could be similar to PG 1407+265, a quasar in which for some unknown reason the high-ionization emission lines are very broad, very weak, and highly blueshifted.Comment: AJ, in press, 10 pages emulateapj forma

    Numerical atomic orbitals for linear scaling

    Full text link
    The performance of basis sets made of numerical atomic orbitals is explored in density-functional calculations of solids and molecules. With the aim of optimizing basis quality while maintaining strict localization of the orbitals, as needed for linear-scaling calculations, several schemes have been tried. The best performance is obtained for the basis sets generated according to a new scheme presented here, a flexibilization of previous proposals. The basis sets are tested versus converged plane-wave calculations on a significant variety of systems, including covalent, ionic and metallic. Satisfactory convergence (deviations significantly smaller than the accuracy of the underlying theory) is obtained for reasonably small basis sizes, with a clear improvement over previous schemes. The transferability of the obtained basis sets is tested in several cases and it is found to be satisfactory as well.Comment: 9 pages with 2 encapsulated postscript figures, submitted to Phys. Rev.

    Deweyan tools for inquiry and the epistemological context of critical pedagogy

    Get PDF
    This article develops the notion of resistance as articulated in the literature of critical pedagogy as being both culturally sponsored and cognitively manifested. To do so, the authors draw upon John Dewey\u27s conception of tools for inquiry. Dewey provides a way to conceptualize student resistance not as a form of willful disputation, but instead as a function of socialization into cultural models of thought that actively truncate inquiry. In other words, resistance can be construed as the cognitive and emotive dimensions of the ongoing failure of institutions to provide ideas that help individuals both recognize social problems and imagine possible solutions. Focusing on Dewey\u27s epistemological framework, specifically tools for inquiry, provides a way to grasp this problem. It also affords some innovative solutions; for instance, it helps conceive of possible links between the regular curriculum and the study of specific social justice issues, a relationship that is often under-examined. The aims of critical pedagogy depend upon students developing dexterity with the conceptual tools they use to make meaning of the evidence they confront; these are background skills that the regular curriculum can be made to serve even outside social justice-focused curricula. Furthermore, the article concludes that because such inquiry involves the exploration and potential revision of students\u27 world-ordering beliefs, developing flexibility in how one thinks may be better achieved within academic subjects and topics that are not so intimately connected to students\u27 current social lives, especially where students may be directly implicated
    corecore