6,074 research outputs found
Approaches to Faith, Guest Editorial Preface
Springer. We find in contemporary culture starkly contrasting estimates of the value of faith. On the one hand, for many people, faith is a virtue or positive human value, something associated with understanding, hope, and love, something to be inculcated, maintained, and cherished. On the other hand, for many people, faith is a vice, something associated with dogmatism, arrogance, and close-mindedness, something to be avoided at all costs. The papers included in this special (double) issue on approaches to faith explore questions about faith in a variety of settings through a diverse range of examples, both secular and religious. The attempt to deepen our understanding of faith in the context of ordinary human relationships (e.g., between parents and children, friends, generals and their armies, business partners, citizens and the state), a commitment to ideals, or the pursuit of significant goals is clearly of general philosophical interest, as is the examination of potential connections between faith and topics such as trust or reliance
Imaging radar polarimetry from wave synthesis
It was shown that it is possible to measure the complete scattering matrix of an object using data acquired on a single aircraft pass, and can combine the signals later in the data processor to generate radar images corresponding to any desired combination of transmit and receive polarization. Various scattering models predict different dependence on polarization state of received power from an object. The imaging polarimeter permits determination of this dependence, which is called the polarization signature, of each point in a radar image. Comparison of the theoretical predictions and observational data yield identification of possible scattering mechanisms for each area of interest. It was found that backscatter from the ocean is highly polarized and well-modeled by Bragg scattering, while scattering from trees in a city park possesses a considerable unpolarized component. Urban regions exhibit the characteristics expected from dihedral corner reflectors and their polarization signatures are quite different from the one-bounce Bragg model
Differential Effects of Race and Poverty on Ambulatory Care Sensitive Conditions
This study is a continuation of an earlier study that examined hospitalization rates for ambulatory care sensitive (ACS) conditions, as a proxy for quality of care, and found evidence of a racial disparity among African American and White Medicare beneficiaries. The current study sought to determine whether neighborhood socioeconomic status (SES) explained this disparity. Differences in rates of ACS hospitalizations by race were assessed using Cochran-Mantel Haenszel tests and Poisson regression. Unadjusted rate ratios for ACS hospitalization for African Americans vs. Whites were found to be higher in low poverty areas (rate ratio (RR)=1.13; 95% CI (1.08, 1.17)) than in high poverty areas (RR=0.97; 95% CI (0.89, 1.05)). After controlling for various indicators of area SES in multivariate analyses race differences in ACS hospitalization rates persisted. Rural neighborhoods and those with higher percent of non-high school graduates were associated with greater risk of ACS hospitalizations
A preconditioner for the 3D Oseen equations
We describe a preconditioner for the linearised incompressible Navier-Stokes equations (the Oseen equations) which requires as components only a preconditioner/solver for each of a discrete Laplacian and a discrete advection-diffusion operator. With this preconditioner, convergence of an iterative method such as GMRES is independent of the mesh size and depends only mildly on the viscosity parameter (the inverse Reynolds number). Thus when the component preconditioner/solvers are effective on their respective subproblems (as one expects with an appropriate multigrid cycle for instance) a fast Oseen solver results
Recommended from our members
Epiplastral and geographic variation in Echmatemys, a geoemydid turtle from the Eocene of North America: A multi-tiered analysis of epiplastral shape complexity
Numerous geoemydid turtle fossils from the extinct genus Echmatemys have been recovered from the middle Eocene Uinta Formation, Uinta Basin, Utah over the past several decades. Here, we tested whether co-occurring Uintan species Echmatemys callopyge and E. uintensis can be reliably differentiated based on epiplastral morphology, and whether their geospatial distributions overlapped significantly. The geographic spatial and stratigraphic distributions of Uinta Basin E. callopyge and E. uintensis specimens were compared using ArcGIS and analysis of variance (ANOVA). The analysis revealed overlapping geographic distributions of these two species, and no significant differences in stratigraphic dispersal. This finding of extensive geospatial overlap between the two Uintan Echmatemys species highlights the need for accurate taxonomic identification, such as the gular scale morphology validated here. In addition, we sought to address a methodological question regarding the relative efficacy of data complexity in this context. Using epiplastra from three additional Eocene species of Echmatemys, we employed hierarchical analyses of increasing data complexity, from standard linear dimensions to 2D geometric morphometrics to 3D laser scans, to determine the degree to which data complexity contributes to taxonomic assessments within this genus. Uintan species E. callopyge and E. uintensis were found to differ significantly in epiplastral shape as captured by all three categories of data. These findings verify that these two co-occurring species can be differentiated consistently using the shape of the gular scale, and that the use of geometric morphometrics can improve identification of fragmentary specimens. Among the non-Uintan species, dorsal and ventral 2D landmark data reliably differentiated among species, but the linear dimensions were less useful
Simpson’s Paradox in the interpretation of “leaky pipeline” data
The traditional ‘leaky pipeline’ plots are widely used to inform gender equality policy and practice. Herein, we demonstrate how a statistical phenomenon known as Simpson’s paradox can obscure trends in gender ‘leaky pipeline’ plots. Our approach has been to use Excel spreadsheets to generate hypothetical ‘leaky pipeline’ plots of gender inequality within an organisation. The principal factors, which make up these hypothetical plots, can be input into the model so that a range of potential situations can be modelled. How the individual principal factors are then reflected in ‘leaky pipeline’ plots is shown. We find that the effect of Simpson’s paradox on leaky pipeline plots can be simply and clearly illustrated with the use of hypothetical modelling and our study augments the findings in other statistical reports of Simpson’s paradox in clinical trial data and in gender inequality data. The findings in this paper, however, are presented in a way, which makes the paradox accessible to a wide range of people
Mathematical modelling of tissue-engineering angiogenesis
We present a mathematical model for the vascularisation of a porous scaffold following implantation in vivo. The model is given as a set of coupled non-linear ordinary differential equations (ODEs) which describe the evolution in time of the amounts of the different tissue constituents inside the scaffold. Bifurcation analyses reveal how the extent of scaffold vascularisation changes as a function of the parameter values. For example, it is shown how the loss of seeded cells arising from slow infiltration of vascular tissue can be overcome using a prevascularisation strategy consisting of seeding the scaffold with vascular cells. Using certain assumptions it is shown how the system can be simplified to one which is partially tractable and for which some analysis is given. Limited comparison is also given of the model solutions with experimental data from the chick chorioallantoic membrane (CAM) assay
- …