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I. INTRODUCTION

An imaging radar polarimeter measures the radar backscatter

intensity and relative phase as a function of both the transmitted and

received wave polarization states. We measure directly the amplitude and

phase of all elements of the scattering matrix for each individual pixel in a

radar image, and subsequent data processing combines these elements to

synthesize any desired combination of transmit and receive antenna

polarizations. Different scattering models predict different functional

dependences of intensity on polarization--observation of this dependence for

actual targets permits identification of the dominant scattering mechanisms

contributing to the measured backscatter. For example, we find that Bragg

scattering closely approximates the observed scattering from the ocean. Urban

areas can be modeled as two-bounce dielectric corner reflectors.

Radar remote sensing provides information about the geometric and

electric structure of an object. A conventional imaging radar measures a

single value of reflectivity for many thousands of points in a scene for a

single polarization, whereas observation with an imaging radar polarimeter can

completely determine the dependence of reflectivity on polarization for each

point in the scene. The radar polarization signature of an object permits

stronger inferences of the physical scattering process than

single-polarization measurements through identification and characterization

of the dominant scattering mechanism, thus the solution for geometric shape

and dielectric constant of an object is less ambiguous. The techniques

required to generate arbitrary radar polarization through reconfiguration of

system hardware have been known for some time, at least since Hagfors' (1967)

lunar observations. This subject has recently been reviewed in some detail by

Giuli (1986). A severe limitation of this approach is that the hardware must

be modified for each observation, making it infeasible to measure the complete

polarization signature of many points in a scene. Here we report a new

approach to measurement of the complete polarization signature of an image

implemented with an airborne synthetic aperture radar system: we utilize

signals recorded on one data pass from orthogonal linearly-polarized antennas

which we combine in the data processor to synthesize any desired combination

of transmit and receive polarizations. This technique allows us to measure

the complex, multichannel reflectivity of a scene on a single aircraft pass

and later reprocess the data to provide multiple image maps, each representing

the backscattered energy from the scene measured with a different combination

of observational transmit and receive polarizations. The resulting

polarization signature measurements indicate optimum polarizations for

observations of certain classes of objects, and give insight into the

identification of dominant scattering mechanisms for each kind of object.

Knowledge of the scattering mechanism is helpful in providing an accurate

description of the object of interest.
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II. POLARIZATION OF THE TRANSMITTING AND RECEIVING ANTENNAS

We can denote the polarization state of the transmitting antenna by

a complex 2-vector C t such that

ct = ct,x (1)

Ct,y

Where Ct, x is the phasor representation of the transmitted, complex

(amplitude and phase) wave amplitude in the x direction, and Ct,y represents
the complex wave amplitude in the y direction when a unit voltage signal is

applied to the antenna terminals. The wave amplitudes in equation (i) are

related to the Stokes parameters s i of the antenna by

so--ICt.xl2 + Ict.yl 2

Sl = ICt,xl 2 -Ict,yl 2

s2: ICt,xl ICt,yl cosw

s3--ICt.xl ICt,yl sin w

(2)

where w is the phase difference between Ct, x and Ct,y. We list some of
the more commonly used radar polarizations and their expression in terms of

the above quantities in Table I.

Simarily, we can describe the polarization of the receiving antenna

by another 2-vector C r, where Cr, x represents the response of the antenna

to a unit field aligned with the x direction and Cr,y represents the
response to a unit field aligned with y.

III. POLARIZATION CHARACTERISTICS OF THE SCATTERERS

We model the scattering behavior of an object as a two-by-two

scattering matrix S with complex elements (see, for example, van de Hulst,

1980), that is, each element describes the relative magnitude and phase of the

incident and scattered waves in the coordinate system described above, hence

the matrix S includes the transformation from transmitted wave to received

wave directions. In the most general case, element is a function of the

angles of incidence and scattering, and the scattering matrix has the form

S = Sxx(ri,di;rs,d s) Sxy(ri,di;rs,ds)

Syx(ri,di;rs,ds) Syy(ri,di;rs,ds )

with the elements of S defined as in the following example:

Sxy(ri,di;rs,d s) represents the complex ratio

E )
s,x(rs,ds

Ei,y(ri'd _

(3)

The quantity

(4)
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where Ei,y is the y-component of the incident wave, for incidence direction
(ridi) , and Es,x is the x-component of scattered wave amplitude in the
direction (rs,ds). The other elements of S are defined correspondingly,
and several representative S-matrices for various scattering models are given
in Table 2. Using the above definitions of Ct, Cr and S, we model the
voltage V measuredat the terminals of an antenna Cr in response to a wave
initially generated by the antenna Ct, and subsequently scattered by an
object characterized by S by

v = cT S Ct (5)

where the superscript T denotes the matrix transpose operation.

matrix multiplication (5), we have

Expanding the

V = Cr, x Sxx Ct, x + Cr, x Sxy Ct,y + Cr,y Syx Ct, x

+ Cr,y Syy Ct,y (6)

The resulting received power P is then given by

P = V V* (7)

where the * denotes complex conjugation.

Note that using horizontally-polarized antennas (Ct = (i 0),

Cr = (i 0)) for both transmit and receive functions permits inference of

Sxx directly from our measurement V, as only the first term of (6)

contributes. The remaining combinations of horizontal and vertical transmit

and receive antennas yield each of the other elements Sxy , Syx, and Syy.

Knowledge of all elements of S then allows us to calculate the

measured scattering behavior of an object in response to synthesized,

arbitrary transmit and receive polarizations. For example, from the actual

measured voltages Sij , the polarization vectors of the desired antenna
polarizations, and equation (I0), we can express the voltage we would have

measured with RCP (C t = (1/21/2 (I i)) transmit and LCP (Cr =

(i/2)i/2(i i)) receiving antennas as

V = CT(LCP antenna) S Ct (RCP antenna)

= (1/2) 1/2 (i i) Sxx Sxy (1/2) 1/2 i

Syx Syy i

= (1/2) (i l) Sxx + iSxy

Syx + iSyy

= (1/2) (iSxx -Sxy + Syx +iSyy) (8)

In this manner, we can determine the measured voltage, and hence

the power corresponding to any arbitrary combination of transmit and receive

polarizations utilizing only horizontally and vertically polarized antennas,

if we employ equations of the form (6).
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It is instructive at this point to consider a simple example of

target backscatter behavior as a function of polarization in order to under-

stand the basic operation of the polarimeter. The scattering matrix S that

describes a unit-area isotropically scattering sphere is (van de Hulst, 1980)

s = 1 o (9)

0 1

The backscatter coefficient is unity for both of the diagonal elements of the

scattering matrix, and zero for the off-diagonal elements. With this

scattering matrix, equation (6) simplifies to

V = Cr, x Ct, x + Cr,y Ct,y (lO)

We note that if the transmit polarization is horizontal (C t =

(I 0)) and the receive polarization is vertical (Cr = (0 I)), the

response of the polarimeter will be zero. If RCP is chosen for transmit and

LCP for receive (Ct = (1/2) 1/2 (i i), C r = (1/2) 1/2 (i I)),

however, the power received is maximized and equal to i. Same-sense circular

polarization for transmit and receive (RCP-RCP ro LCP-LCP) again yields zero

power.

In summary, if our airborne hardware permits direct measurement of

each element of S, through use of both horizontal and vertical antennas for

transmit and receive, then these elements can be combined in the data

processor to produce images representing any desired polarization state. Our

imaging radar polarimeter thus consists of i) a conventional imaging radar

with linear, orthogonally-polarized horizontal and vertical antennas, and

ii) a data processor that can be used to synthesize the complete polarization

signatures for each point in a scene.

IV. POLARIZATION SIGNATURES

Imaging radar polarimeter observation of an object with scattering

matrix S yields a measured voltage V, and power P, as given by equations (6)

and (7) above. Since this quantity depends on the polarization states C t

and Cr of the transmitting and receiving antennas, respectively, we can

define the polarization signature of S as the variation of P as a function of

the polarizations of the antennas. The most general representation allows

arbitrary values for each of the transmitting and receiving polarizations.

We illustrate some typical polarization signatures by first

calculating scattering matrices corresponding to several scattering models,

and then displaying the signatures resulting from application of equations (6)

and (7) to each model. The first is an isotropically-scattering sphere (see

equation (9) above), the second is a Bragg model, and the third is a dihedral

corner reflector made of a dielectric material that is applicable to modeling

urban areas. We note that the Bragg model predicts higher reflectivity for

vertically-polarized waves than for horizontally-polarized waves, while the

dihedral model predicts the reverse.
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Examination of the plots in Figure 1 corresponding to the isotropic
sphere shows that for co-polarized imaging, linear polarization provides the
greatest return, and that the signal strength is independent of linear
polarization angle. This independence of linear polarization direction is a
consequence of the lack of a preferred orientation for spheres. For the
cross-polarization spectrum, signals are greatest for the circular polariza-
tions and smallest for linear polarizations. The Bragg model is somewhat
different in nature from the isotropic sphere models in that an enhancement
for vertical polarization over horizontal polarization is evident in the
co-polarized spectrum. Also, the co-polarized minimum occurs not at LCP and
RCPbut slightly towards linear polarization for each. This behavior is due
to ISyyl exhibiting greater magnitude than ISxxl. A dielectric
dihedral corner reflector model exhibits a very different polarization

signature from the previous two models. The co-polarized spectrum possesses

two minima at linear polarizations offset by ±45 ° from the x and y directions,

and the cross-polarized spectrum possesses maxima at these locations.

We note that use of an imaging polarimeter to observe the full

polarization signature of an object, coupled with interpretation in terms of

simple scattering mechanisms such as those illustrated here, allows us to

develop a scattering model that is consistent with the measured polarization

properties of the object, even if we cannot exclude all other possible

models. While we have clearly not considered all possible scattering models,

it follows from the above that if the polarization signature of a real object

could be unambiguously identified as resembling any one of the models depicted

here, the dominant scattering mechanism may be described and analyzed with

some confidence.

In Figure 2 we present polarimeter images in synthesized

polarization combinations, and also present some complete polarization

signatures of sub-areas of these images. The data shown here were processed

by synthesizing a set of linear, co-polarized antennas and applying them to

data collected over San Francisco, California. This figure consists of twenty

images; the upper left image corresponds to horizontal transmit, horizontal

receive polarization. Scanning from left to right and from top to bottom, the

angle of the electric field vector is advanced 2.5 ° per image and the

amplitude of the result is displayed. The lower right image thus corresponds

to linear polarization oriented 47.5 ° from horizontal. We note that the urban

area, for example, exhibits great variation in brightness as the polarization

changes, while the Golden Gate Park area changes little. As we note in the

discussion of the polarization signatures below, we can predict the variation

of the urban area quite well using a two-bounce corner reflector model, while

we interpret the relative constancy of the park as indicative of a higher

degree of multiple scatter than is apparent elsewhere in the image.

Measurement of the brightness of any sub-area of an image as the

polarization is varied yields the observed polarization signature of that

region. The complete polarization signatures for each of three sub-areas are

shown in Figure 3. The observed signature of the ocean closely resembles the

Bragg signature of Figure Ib, thus it is likely that some Bragg-like mechanism

is responsible for backscatter from the ocean. The urban polarization

signature is similar in appearance to the dihedral model (Figure ic), with the

addition of a "pedestal" to the overall signature. The park signature
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exhibits a still greater pedestal than does the urban signature. Weascribe
this additive term to an unpolarized component in the observed backscatter,
thus the signal from an urban area can be modeled as including a polarized,
dihedral-type return plus an unpolarized component.

We have shown that it is possible to measure the complete
scattering matrix of an object using data acquired on a single aircraft pass,
and can combine the signals later in the data processor to generate radar
images corresponding to any desired combination of transmit and receive
polarization. Various scattering models predict different dependence on
polarization state of received power from an object. Our imaging polarimeter
permits determination of this dependence, which we call the polarization
signature, of each point in a radar image. Comparison of the theoretical
predictions and observational data yield identification of possible scattering
mechanismsfor each area of interest. Wehave found that backscatter from the
ocean is highly polarized and well-modeled by Bragg scattering, while
scattering from trees in a city park possesses a considerable unpolarized
component. Urban regions exhibit the characteristics expected from dihedral
corner reflectors and their polarization signatures are quite different from
the one-bounce Bragg model.
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Table I. Some common radar polarizations

Polarization

Complex Stokes

Vector C polarization p vector

Linear horizontal

Linear vertical

Right-hand circular (RCP) (1/2) I/2

Left-hand circular (LCP) (1/2) 1/2

(i 0) 0 (1,1,0,0)

(0 i) B (i,-I,0,0)

(i i) i (i,0,0,-I)

(i i) -i (1,o,o,1)
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Table 2. Representative S - matrices

Model S-matrix Notes

Isotropic sphere a 0

0 a

a real, a > 0

Bragg a 0

0 b

a,b real

a >0, b >0

b > a

Real-dielectric dihedral

corner reflector

-a 0

0 b

a,b real

a > 0, b >0
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