211 research outputs found

    Lithostratigraphy, sedimentation and evolution of the Volta Basin in Ghana

    Get PDF
    We present a revised lithostratigraphy for the Voltaian Supergroup of Ghana, based on a review of existing literature, interpretations of remotely sensed data and reconnaissance field survey of the Volta Basin. These strata thicken eastwards, to a maximum of between 5 and 6 km adjacent to the Pan-African Dahomeyide orogen. They began to accumulate some time after about 1000 Ma, along the margin of an epicontinental sea. Initial sedimentation, comprising the age-equivalent Kwahu and Bombouaka Groups, shows a cyclical mode of deposition controlled by eustatic changes in sea-level that produced a range of nearshore marine, littoral and terrestrial environments. A major erosional interval was followed by deposition of the 3–4 km thick Oti-Pendjari Group. Basal tillites and associated sandy diamictons are correlated with the Marinoan (end-Cryogenian) glaciation, indicating a maximum depositional age of about 635 Ma. The overlying cap carbonates and tuffs were deposited within a shallow epeiric sea bordered by a volcanically active rift system. The main part of the group records the transition from a rifted passive margin to a fully developed foreland basin receiving marine flysch in the form of argillaceous strata interbedded with highly immature wacke-type sandstones and conglomerates. Maximum accommodation space was developed within a foredeep adjacent to the Dahomeyide belt. Towards the end of the orogenic phase, the foredeep succession became partially inverted and then was buried under coarse terrestrial, red-bed molasse of the Obosum Group

    Geodynamic setting and origin of the Oman/UAE ophiolite

    Get PDF
    The ~500km-long mid-Cretaceous Semail nappe of the Sultanate of Oman and UAE (henceforth referred to as the Oman ophiolite) is the largest and best-preserved ophiolite complex known. It is of particular importance because it is generally believed to have an internal structure and composition closely comparable to that of crust formed at the present-day East Pacific Rise (EPR), making it our only known on-land analogue for ocean lithosphere formed at a fast spreading rate. On the basis of this assumption Oman has long played a pivotal role in guiding our conceptual understanding of fast-spreading ridge processes, as modern fast-spread ocean crust is largely inaccessible

    Kinetics of CO2-fluid-rock reactions in a basalt aquifer, Soda Springs, Idaho

    Get PDF
    The dissolution of silicate minerals by CO2-rich fluids and the subsequent precipitation of CO2 as carbonate minerals represent a means of permanently storing anthropogenic CO2 waste products in a solid and secure form. Modelling the progression of these reactions is hindered by our poor understanding of the rates of mineral dissolution–precipitation reactions and mineral surface properties in natural systems. This study evaluates the chemical evolution of groundwater flowing through a basalt aquifer, which forms part of the leaking CO2-charged system of the Blackfoot Volcanic Field in south-eastern Idaho, USA. Reaction progress is modelled using changes in groundwater chemistry by inverse mass balance techniques. The CO2-promoted fluid–mineral reactions include the dissolution of primary plagioclase, orthoclase, pyroxene and gypsum which is balanced by the precipitation of secondary albite, calcite, zeolite, kaolinite and silica. Mineral mole transfers and groundwater flow rates estimated from hydraulic head data are used to determine the kinetics of plagioclase and orthoclase feldspar dissolution. Plagioclase surface area measurements were determined using the evolution of the U-series isotope ratios in the groundwater and are compared to published surface area measurements. Calculated rates of dissolution for plagioclase range from 2.4 × 10−12 to 4.6 × 10−16 mol/m2/s and orthoclase from 2.0 × 10−13 to 6.8 × 10−16 mol/m2/s respectively. These feldspar reaction rates, correlate with the degree of mineral–fluid disequilibrium and are similar to the dissolution rates for these mineral measured in other natural CO2-charged groundwater systems

    Kinetics of CO2-fluid-rock reactions in a basalt aquifer, Soda Springs, Idaho

    Get PDF
    The dissolution of silicate minerals by CO2-rich fluids and the subsequent precipitation of CO2 as carbonate minerals represent a means of permanently storing anthropogenic CO2 waste products in a solid and secure form. Modelling the progression of these reactions is hindered by our poor understanding of the rates of mineral dissolution–precipitation reactions and mineral surface properties in natural systems. This study evaluates the chemical evolution of groundwater flowing through a basalt aquifer, which forms part of the leaking CO2-charged system of the Blackfoot Volcanic Field in south-eastern Idaho, USA. Reaction progress is modelled using changes in groundwater chemistry by inverse mass balance techniques. The CO2-promoted fluid–mineral reactions include the dissolution of primary plagioclase, orthoclase, pyroxene and gypsum which is balanced by the precipitation of secondary albite, calcite, zeolite, kaolinite and silica. Mineral mole transfers and groundwater flow rates estimated from hydraulic head data are used to determine the kinetics of plagioclase and orthoclase feldspar dissolution. Plagioclase surface area measurements were determined using the evolution of the U-series isotope ratios in the groundwater and are compared to published surface area measurements. Calculated rates of dissolution for plagioclase range from 2.4 × 10−12 to 4.6 × 10−16 mol/m2/s and orthoclase from 2.0 × 10−13 to 6.8 × 10−16 mol/m2/s respectively. These feldspar reaction rates, correlate with the degree of mineral–fluid disequilibrium and are similar to the dissolution rates for these mineral measured in other natural CO2-charged groundwater systems

    Synchronizing terrestrial and marine records of environmental change across the Eocene–Oligocene transition

    Get PDF
    Records of terrestrial environmental change indicate that continental cooling and/or aridification may have predated the greenhouse–icehouse climate shift at the Eocene–Oligocene transition (EOT) by ca. 600 kyr. In North America, marine-terrestrial environmental change asynchronicity is inferred from a direct comparison between the astronomically tuned marine EOT record and published 40Ar/39Ar geochronology of volcanic tuffs from the White River Group (WRG) sampled at Flagstaff Rim (Wyoming) and Toadstool Geologic Park (Nebraska), which are type sections for the Chadronian and Orellan North American Land Mammal Ages. We present a new age-model for the WRG, underpinned by high-precision 206Pb/238U zircon dates from 15 volcanic tuffs, including six tuffs previously dated using the 40Ar/39Ar technique. Weighted mean zircon 206Pb/238U dates from this study are up to 1.0 Myr younger than published anorthoclase and biotite 40Ar/39Ar data (calibrated relative to Fish Canyon sanidine at 28.201 Ma). Giving consideration to the complexities, strengths, and limitations associated with both the 40Ar/39Ar and 206Pb/238U datasets, our interpretation is that the recalculated 40Ar/39Ar dates are anomalously old, and the 206Pb/238U (zircon) dates more accurately constrain deposition. 206Pb/238U calibrated age–depth models were developed in order to facilitate a robust intercomparison between marine and terrestrial archives of environmental change, and indicate that: (i) early Orellan (terrestrial) cooling recorded at Toadstool Geologic Park was synchronous with the onset of early Oligocene Antarctic glaciation and (ii) the last appearance datums of key Chadronian mammal taxa are diachronous by ca. 0.7 Myr between central Wyoming and NW Nebraska

    Duration and nature of the end-Cryogenian (Marinoan) glaciation

    Get PDF
    The end-Cryogenian glaciation (Marinoan) is portrayed commonly as the archetype of snowball Earth, yet its duration and character remain uncertain. Here we report U-Pb zircon ages for two ash beds from widely separated localities of the Marinoan-equivalent Ghaub Formation in Namibia: 639.29 ± 0.26 Ma and 635.21 ± 0.59 Ma. These findings verify, for the first time, the key prediction of the snowball Earth hypothesis for the Marinoan glaciation, i.e., longevity, with a duration of ≄4 m.y. They also show that the nonglacial interlude of Cryogenian time spanned 20 m.y. or less and that glacigenic erosion and sedimentation, and at least intermittent open-water conditions, occurred 4 m.y. prior to termination of the Marinoan glaciation

    U-Pb geochronology and global context of the Charnian Supergroup, UK: constraints on the age of key Ediacaran fossil assemblages

    Get PDF
    U-Pb (zircon) ages for key stratigraphic volcanic horizons within the ∌3200-m-thick Ediacaran-age Charnian Supergroup provide an improved age model for the included Avalonian assemblage macrofossils and, hence, temporal constraints essential for intercomparisons of the Charnian fossils with other Ediacaran fossil assemblages globally. The Ives Head Formation (Blackbrook Group), the oldest exposed part of the volcaniclastic Charnian Supergroup of the late Neoproterozoic Avalonian volcanic arc system of southern Britain, contains a bedding plane with an impoverished assemblage of ivesheadiomorphs that is constrained to between ca. 611 Ma and 569.1 ± 0.9 Ma (total uncertainty). Higher-diversity biotas, including the holotypes of Charnia, Charniodiscus, and Bradgatia, occupy the upper part of the volcaniclastic succession (Maplewell Group) and are dated at 561.9 ± 0.9 Ma (total uncertainty) and younger by zircons interpreted as coeval with eruption and deposition of the Park Breccia, Bradgate Formation. An ashy volcanic-pebble conglomerate in the Hanging Rocks Formation at the very top of the supergroup yielded two U-Pb zircon populations: an older detrital one at ca. 604 Ma, and a younger population at ca. 557 Ma, which is interpreted as the approximate depositional age. The temporal association of the fossiliferous Charnian Supergroup with comparable fossiliferous deep-water successions in Newfoundland, and the probable temporal overlap of the youngest Charnwood macrofossils with those from different paleoenvironmental settings, such as the Ediacaran White Sea macrofossils, indicate a primary role for ecological sensitivity in determining the composition of these late Neoproterozoic communities

    Secular change of true polar wander over the past billion years

    Get PDF
    The rate of movement of Earth’s solid shell relative to its spin axis, or true polar wander, depends on variations in mantle convection and viscosity. We report paleomagnetic and geochronologic data from South China that constrain the rate of rapid true polar wander (>5° per million years) between 832 million years and 821 million years ago. Analysis of the paleomagnetic database demonstrates secular change of true polar wander related to mantle cooling and thermal structure across supercontinent cycles. True polar wander rates are relatively muted with a partially insulated mantle during supercontinent assembly and accelerate as mantle thermal mixing reestablishes with supercontinent breakup. Decreasing true polar wander rate through the Neoproterozoic was succeeded by overall smaller variations in the Phanerozoic. We propose that Neoproterozoic extensive plate tectonic activities enhanced mantle cooling, giving rise to a reduction in mantle convective forcing, an increase in mantle viscosity, and a decrease in true polar wander rates into the Phanerozoic

    Crystallization of superfast‐spreading oceanic crust (ODP Hole 1256D, Pacific Ocean): constraints from zircon geochronology

    Get PDF
    Studies of oceanic crust, which covers a large proportion of the Earth's surface, have provided significant insight into the dynamics of crustal accretion processes at mid‐ocean ridges. It is now recognized that the nature of oceanic crust varies fundamentally as a function of spreading rate. Ocean Drilling Program (ODP) Hole 1256D (eastern Pacific Ocean) was drilled into the crust formed at a superfast spreading rate, and hence represents a crustal end member. Drilling recovered a section through lava and sheeted dykes and into the plutonic sequence, the study of which has yielded abundant insight into magmatic and hydrothermal processes operating at high spreading rates. Here, we present zircon U‐Pb dates for Hole 1256D, which constrain the age of the section, as well as the duration of crustal accretion. We find that the main pulse of zircon crystallization within plutonic rocks occurred at 15.19 Ma, consistent with magnetic anomalies, and lasted tens of thousands of years. During this episode, the main plutonic body intruded, and partial melts of the base of the sheeted dykes crystallized. One sample appears to postdate this episode by up to 0.25 Myr, and may be an off‐axis intrusion. Overall, the duration of crustal accretion was tens to several hundreds of thousands of years, similar to that found at the fast‐spreading East Pacific Rise and the slow‐spreading Mid‐Atlantic Ridge. This indicates that crustal accretion along slow‐ to superfast‐spreading ridges occurs over similar time scales, with substantially longer periods of accretion occurring at ultraslow‐spreading ridges characterized by thick lithosphere
    • 

    corecore