
1.  Introduction
Oceanic crust forms continuously along mid-ocean ridges in response to the plate separation, during a hallmark 
process of plate tectonics. The dynamics of the formation of oceanic crust at mid-ocean ridges has been the subject 
of debate since their discovery in the 1950s. There is now consensus that there are first-order differences in crus-
tal accretion processes and the resulting lithospheric architecture between fast-, slow-, and ultraslow-spreading 
mid-ocean ridges (Dick et al., 2003). At fast-spreading ridges, the crust appears to have a fairly uniform thickness 
of 6–7 km (Chen, 1992; White et al., 1992) and conforms to the classic Penrose-type igneous sequence of lava, 
sheeted dykes and gabbroic rocks overlying mantle peridotite (Conference Participants, 1972). This is in keeping 
with observations from geophysical studies, which show a robust magmatic system characterized by a melt-rich 
body at the top of the lower crust, overlying lower-crustal-scale crystal mush (Carbotte et al., 2013; Crawford 
& Webb, 2002; Dunn et al., 2000; Marjanović et al., 2018; Sinton & Detrick, 1992). At slower spreading rates, 
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where mantle upwelling is slower and less melt is produced, the magmatic system is less extensive, with fewer 
magma reservoirs detected geophysically (Detrick et al., 1990; Sinton & Detrick, 1992). As a result, the tectonic 
accommodation of extension is more prominent. This leads to the occurrence of long-lived detachment faults, 
which can exhume lower crustal and mantle rocks onto the seafloor (Cann et  al.,  1997; Cannat,  1993; Dick 
et al., 1981; Escartin et al., 2008; Karson & Dick, 1983; Lagabrielle et al., 1998; MacLeod et al., 2002; Mével 
et al., 1991; Smith et al., 2006). As a result, the oceanic crust does not have a uniform thickness, and is highly 
variable along-axis. Locally, the crust may only comprise gabbroic plutons in mantle peridotite (Cannat, 1996; 
Cannat et al., 1997) or be absent entirely (Cannat et al., 2006; Dick et al., 2003; Michael et al., 2003).

Zircon geochronology provides an important—yet underutilized—tool to study the dynamics of crustal accretion 
at mid-ocean ridges. Through U-Pb and U-Th dating, zircon can provide the absolute dates of crystallization of 
igneous units, enabling reconstructions of a number of important variables and processes. The first variable is the 
spreading rate (C. J. Lissenberg et al., 2009). The spreading rate can be reconstructed where precise zircon U-Pb 
dates are obtained in a section across-axis. This approach was first applied to the Vema Lithospheric Section 
(11°N, Mid-Atlantic Ridge), where a linear age progression away from the spreading axis revealed a spread-
ing rate of ∼16 mm/yr, in agreement with magnetic anomaly derived plate motion estimates (C. J. Lissenberg 
et al., 2009).

The second variable is the time span of accretion of the plutonic section (Baines et al., 2009; Grimes et al., 2008; 
C. J. Lissenberg et al., 2009; Rioux et al., 2016; Rioux, Lissenberg, et al., 2012; Schwartz et al., 2005). Previous 
studies have shown that the duration of crustal accretion is preserved on the grain scale, the sample scale, as well as 
the crustal scale. Grain-scale information on the duration of crustal accretion occurs in the form of inherited cores 
overgrown by younger rims, which show age differences as much as ∼1.5 Ma at the slow- to ultraslow-spreading 
Southwest Indian Ridge (Schwartz et al., 2005). On a sample scale, different zircon grains from the same sample 
do not always define a uniform age population, but instead may record hundreds of thousands of years of zircon 
growth (C. J. Lissenberg et al., 2009; Rioux, Lissenberg, et al., 2012). On a lower crustal scale, age differences 
of the order of hundreds of thousands of years have been documented between different intrusive series in the (I)
ODP drill core from both Atlantic (Grimes et al., 2008) and Indian (Rioux et al., 2016) oceanic core complexes. 
Overall, zircon U-Pb data have demonstrated that crustal accretion is more protracted than previously assumed; 
even at the East Pacific Rise, where the relatively fast spreading rate would be expected to lead to rapid accretion, 
significant intra-sample age spread in zircon dates was recorded (Rioux, Lissenberg, et al., 2012). To date, no 
straightforward correlation appears to exist between the duration of magmatism and spreading rate.

The third variable that U-Pb zircon dating can resolve is the dynamics of oceanic detachment faults. These 
detachment faults are now recognized to play a significant role in accretion along slow- and ultraslow-spreading 
ridges (Cannat et al., 2006; Escartin et al., 2008; Smith et al., 2006). Zircon U-Pb dates can enable reconstructions 
of the rates of slip on the detachments (Baines et al., 2008; Grimes et al., 2008). This has shown that slip along 
the detachment faults may accommodate the majority of plate separation during periods of detachment faulting, 
leading to significant asymmetric spreading (Baines et al., 2008; Grimes et al., 2008). The dates can also be used 
to determine the depth of crystallization of gabbroic rocks in the footwall of the detachments (C. J. Lissenberg 
et al., 2016). Furthermore, when combined with zircon (U-Th)/He dates, zircon U-Pb dates enable the depth and 
thermal structure of the detachment faults to be reconstructed (Grimes et al., 2011; Schoolmeesters et al., 2012).

Integrating zircon U-Pb or U-Th dates with dates for systems with lower closure temperatures (e.g., zircon 
(U-Th)/He and  40Ar/ 39Ar of associated phases) has enabled reconstructions of the cooling histories for mid-ocean 
magmatic systems. This has been applied successfully to both plutonic sections (John et  al.,  2004; Schwartz 
et al., 2009) and volcanic rocks (Schmitt et al., 2011).

Finally, U-Pb dating of igneous and hydrothermal zircons have been used to determine the age of both magmatic 
crystallization and hydrothermal alteration of gabbroic rocks at the Vema Lithospheric Section (Mid-Atlantic 
Ridge; Rioux et  al.,  2015) and at Atlantis Bank (Southwest Indian Ridge; Schwartz et  al.,  2010), providing 
absolute time constraints on alternating cycles of magmatism and hydrothermal fluid flow at mid-ocean ridges.

Combined, studies using zircon geochronology of the oceanic crust have thus led to considerable new insights 
into the dynamics of oceanic crustal accretion. Here, we present zircon U-Pb dates of plutonic rocks from 
superfast-spreading crust recovered in Ocean Drilling Program (ODP) Hole 1256D (eastern Pacific Ocean), with 
the aim of determining its absolute age as well as the time span and dynamics of its accretion. We show that crustal 
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accretion was largely completed by 15.19 Ma, but that magmatism may have 
continued for up to 0.25 Myr. Combined with data from across the spreading 
rate spectrum, this indicates that the duration of crustal accretion appears to 
be similar at all spreading rates, with the exception of ultraslow-spreading 
rates, where accretion may take significantly longer.

2.  ODP Hole 1256D
Hole 1256D was drilled in oceanic crust formed during superfast spreading 
along the Pacific-Cocos plate boundary in the eastern Pacific (Figure 1). This 
superfast-spreading episode occurred in the middle Miocene (∼18–11 Ma), 
with magnetic anomalies indicating spreading rates as high as 220 mm/yr 
(Wilson,  1996; Wilson et  al.,  2006). This is the fastest spreading rate on 
record; hence, the crust formed during this interval represents an end member 
configuration of oceanic crust. A section of this crust was drilled over four 
expeditions of the (Integrated) Ocean Drilling Program ((I)ODP): Expe-
ditions 206, 309, 312, and 335 (Teagle et al., 2006, 2012; Wilson, Teagle, 
et al., 2003). The underlying rationale relied on the observation that the depth 
to the lower crustal magmatic system correlates inversely with the spreading 
rate (Carbotte et al., 1998; Phipps Morgan & Chen, 1993; Purdy et al., 1992); 
hence, superfast-spreading crust should have a thin upper crust, enabling 
drilling through a full upper crustal section and into in situ lower oceanic 
crust (Wilson et al., 2006).

The uppermost basement rocks recovered from Hole 1256D comprise a 284  m thick off-axis lava sequence 
of sheet flows and pillows, which overlies the axial volcanic sequence (470 m thick) of predominantly sheet 
and massive flows. These volcanic rocks have typical N-MORB compositions (Cooper, 2007; Neo et al., 2009; 
Yamazaki et al., 2009). Below a ∼50 m thick transition zone, a sheeted dyke complex with a thickness of 346 m 
was recovered. The thin nature of the sheeted dykes relative to the lava has been attributed to the fact that there 
appears to be no level of neutral buoyancy in the crust, as well as the relatively high magmatic pressures expected 
at magma-rich spreading centers, both of which favor extrusion over intrusion (Umino et al., 2008). However, the 
dykes, on average, are more evolved—and hence denser—than the lavas, suggesting that not all dykes erupted 
(Sano et al., 2011). This is consistent with their predominantly horizontal flow fabrics, as recorded by magnetic 
fabrics (Veloso et al., 2014). The lower 115 m of the hole comprised the transition from the upper crust (sheeted 
dykes and lavas) to the lower crust (plutonic rocks): at 1156 m below the top of the basement, the first gabbroic 
rocks were recovered (Figure 2). These form a heterogeneous gabbroic body of 54 m thick (referred to as Gabbro 
1), which is comprised predominantly of medium-grained rocks that range in composition from modally layered 
olivine gabbros to oxide gabbros (Teagle et al., 2006, 2012). Gabbros are internally heterogeneous down to the 
thin section scale, with early, relatively primitive subophitic domains forming patches in a matrix with granular 
textures and evolved compositions (Koepke et al., 2011). Gabbro 1 is intruded near its top by a thin (<1 m) quartz-
rich oxide diorite (Teagle et al., 2006). Following a dyke screen of 54 m thick, a second gabbroic body (Gabbro 
2) was recovered, which appears to be a single intrusion of variably oxide-bearing gabbronorite (Figure 2; Teagle 
et al., 2006, 2012). The hole ended in a second screen of sheeted dykes (Figure 2).

The rocks of both dyke screens, as well as those from the base of the sheeted dyke complex, have granoblas-
tic textures characterized by an assemblage of plagioclase, two pyroxenes and Fe-oxides (Koepke et al., 2008; 
Teagle et al., 2006, 2012). This assemblage is indicative of upper amphibolite to granulite-facies metamorphism, 
consistent with their positions at the top of the lower crust, the magmatic system of which served as a heat source 
(Koepke et al., 2008). The gabbroic rocks and granoblastic dykes are intruded by numerous cm-scale patches, 
veins and dykelets that range in composition from oxide gabbro and diorite to tonalite (Figure 2). These evolved 
rocks are generally medium-grained with granular textures, and commonly contain accessory phases such as 
apatite and zircon (Teagle et al., 2012). In contrast to the granoblastic textures of their host rocks, these intrusions 
retain igneous textures. They do, however, have high-temperature contacts with their host rocks, which indicates 
that they are late- to post-peak metamorphism (Teagle et al., 2012). The contacts of the patches with the gano-
blastic host rocks vary from moderately sharp and comb-textured to gradational; hence, the patches may comprise 

Figure 1.  Map showing the location of Ocean Drilling Program Hole 1256D 
in the eastern Pacific Ocean, along with the seafloor age estimated from 
magnetic anomaly data (Wilson, 1996). Adapted from Wilson et al. (2006).
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both intrusions and segregations (Teagle et al., 2012). The relationships between the granoblastic dykes and the 
evolved intrusions within them have been the subject of recent interest. A number of observations have led to a 
model in which both the granoblastic textures and the intrusions are generated by partial melting of hydrother-
mally altered sheeted dykes during contact metamorphism (Erdmann et al., 2015, 2017; France et al., 2009, 2010; 

Figure 2.  Igneous stratigraphy of the lower ∼120 m of Hole 1256D, which recovered the transition from the upper crust to the lower crust. Samples studied in this 
paper are indicated by the white stars. Modified from Teagle et al. (2012).
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Teagle et al., 2012; Zhang et al., 2017). These observations include a trend of 
depletion in incompatible element contents of the granoblastic dykes toward 
their contacts with the gabbroic rocks (Teagle et  al.,  2012), and the trace 
element distributions in the evolved intrusions (Zhang et  al.,  2017). This 
process has been studied experimentally, with the experiments reproduc-
ing both the nature of the granoblastic residue as well as the composition of 
the partial melts from hydrothermally altered dyke rock starting materials 
(Erdmann et al., 2015, 2017; Fischer et al., 2016; France et al., 2010). Hence, 
the recovered dyke-gabbro transition is a dynamic horizon, characterized by 
intrusion, metamorphism and partial melting.

We selected six samples recovered from Hole 1256D during IODP Expe-
ditions 312 and 335 that span the igneous history of the section (Figure 2). 
These data supplement, and significantly expand upon, the geochronological 
data on three samples (two of Gabbro 1 and one of Gabbro 2) presented 
in Hayman et  al.  (2019). Hayman et  al.  (2019) relied mostly on relatively 
low-precision SIMS analysis but also provided higher precision ID-TIMS 
data for one Gabbro 1 sample. The latter data are directly comparable to 
those that we will present in this paper.

Within our data set, the main episode of crustal magmatism is represented 
by an oxide- and orthopyroxene bearing gabbro from Gabbro 1 (sample 
312-1256D-217R-1, 36–39  cm). This sample is notably less patchy than 
most of Gabbro 1, suggesting it is predominantly comprised of the earlier, 
relatively primitive framework rather than any crystallization products of 
later and more evolved melts; hence, it maximizes the likelihood of dating 
the crystallization of the main Gabbro 1 magma, rather than any late-stage 
intrusive in it. The Gabbro 1 sample is supplemented by a sample of the 
<1  m thick quartz-rich oxide diorite that intrudes Gabbro 1 near its top 
(sample 312-1256D-214R-1, 37–52  cm). The oxide diorite locally has a 
comb structure defined by elongate plagioclase and likely magmatic amphi-
bole, characteristic of fairly sharp but high-temperature intrusion into the 
Gabbro 1 host rock (Teagle et al., 2006). The remaining four samples repre-
sent various occurrences of evolved intrusive veins, dykelets and patches 
in Dyke Screen 2 (Figures 2 and 3). Three samples were taken from rocks 
that were recovered during cleaning operations in the hole, and derive from 
the borehole wall rather than drill core (for details, see Teagle et al., 2012). 
The exact origin and stratigraphic position of these rocks cannot be ascer-
tained; however, the shipboard party considered it most likely that they were 
derived from near the bottom of the hole (Teagle et al., 2012). The first of 
these samples is 335-1256D-Run19-RCJB-Rock C, which is a prominent, 
cm-wide diorite vein with moderately sharp contacts with the granoblastic 
dykes (Figure 3b). The other two, samples 335-1256D-Run11-EXJB-J6 and 
335-1256D-Run13-RCJB-Rock A, represent the evolved patches in Dyke 
screen 2 (Figure 3a), and are oxide-bearing diorite and oxide quartz diorite, 
respectively. Both have diffuse margins against their host granoblastic dykes. 
The last sample, 335-1256D-235R-1, 31–33 cm is a 2 cm wide tonalite dyke-
let cored from the bottom of the hole. It has fairly diffuse margins against the 
surrounding granoblastic dykes (Figure 3c), suggesting that it intruded when 
the dykes were at high temperature.

3.  Methods
Samples were crushed using a steel jaw crusher and disk mill. The <500 μm fraction was processed using a 
Gemini table in order to extract a heavy mineral concentrate, which was further purified by passing through 

Figure 3.  Igneous relationships of intrusive rocks in Dike Screen 2 sampled 
for geochronology. Intrusions include (a) diorite patch, (b) diorite vein, and (c) 
tonalite dykelet in granoblastic dike rocks.
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di-iodomethane with a specific gravity of 3.3. The most magnetic material was extracted using a hand magnet 
and a Frantz magnetic separator. Zircons, typically in the form of crystal fragments, were hand-picked from the 
non-magnetic fraction for ID-TIMS analysis. Medial melt inclusions were common. After picking, the zircons 
were chemically abraded following a modified procedure to remove damaged parts of the crystal that were likely 
to have experienced open-system behavior. First, the zircons were thermally annealed at 900°C for 60 hr in quartz 
crucibles before being individually selected, photographed and loaded into FEP Teflon beakers. Zircons were 
then refluxed in 4 M HNO3 on a hotplate at 120°C for >2 hr, followed by ultrasonic cleaning for at least 20 min. 
The zircon crystals were rinsed with acetone and 4 M HNO3 and loaded into individual 300 μl FEP Teflon micro-
capsules and leached in 29 M HF inside a Parr vessel (a self-sealing stainless-steel jacket) for 12 hr at 180°C. The 
zircons were rinsed with 4 M HNO3 and refluxed in 6 M HCl at 120°C for 2–5 hr, before a final rinsing with 4 M 
HNO3 several times.

The leached zircons and all total procedural blanks were spiked with mixed  205Pb– 233U– 235U (ET535) EARTH-
TIME tracer solution and dissolved in ∼150 μl 29 M HF and trace HNO3 in a Parr vessel at 220°C for ∼60 hr. 
Complete dissolution was checked by visual inspection of some larger crystals and assumed for smaller grains, 
following the standard protocol for dissolution at NIGL. The solutions were dried down as fluorides and 
re-dissolved in 3 M HCl in a Parr vessel overnight at 180°C. U and Pb fractions were isolated by an HCl-based 
anion exchange procedure using Bio-Rad AG-1 resin in Teflon columns. Lead and U fractions were then recom-
bined and dried down with ∼10 μl of H3PO4 and subsequently loaded onto zone-refined Re filaments in a silica 
gel matrix to enhance ionization.

Isotope ratios were measured on a Thermo-Electron Triton TIMS. Lead was measured in the dynamic mode on 
a MassCom secondary electron multiplier; Pb mass bias corrections were made using a fractionation factor of 
0.14 ± 0.02% amu-1 (1 sigma) for samples spiked using ET535. Dead-time and linearity of the secondary elec-
tron multiplier were monitored using repeated analyses of the standards NBS 982, NBS 981, and U 500. Uranium 
oxide (UO2) was measured and corrected for isobaric interferences using an  18O/ 16O value of 0.00205 (IUPAC 
value and measured in-house at BGS; Condon et al., 2015; de Laeter et al., 2003). Uranium was measured in 
dynamic mode and a mass bias fractionation correction was calculated in real-time using the  233U– 235U ratio 
of the ET535 tracer solutions. Corrections for the addition of Pb and U during the procedure (i.e., laboratory 
contamination) were made using the long-term measured isotopic composition and variability of blanks using an 
amount that is based upon contemporary total procedural blanks.

The U/Pb ratio for each analysis was determined via isotope dilution principles and the ET535 mixed  205Pb- 233U– 235U 
tracer (Condon et al., 2015; McLean et al., 2015). A  238U/ 235U value of 137.818 was assumed (Hiess et al., 2012) 
and used in the data reduction algorithm (McLean et al., 2011). Following the approach of Hayman et al. (2019) 
and to facilitate the comparison of data between these two studies,  238U- 206Pb dates were corrected for initial  230Th 
disequilibrium using a Th/U[magma] value of 2.63. In presenting the data, we use the unit Ma to refer to dates, 
and Myr and kyr to describe duration.

4.  Results
Zircons from Hole 1256D are dominated by euhedral, prismatic grains and grain fragments (Figure 4). The grains 
are up to several hundred μm long. In the diorite patches, where zircon is readily apparent in thin section, it is 
intergrown with amphibole, which forms a primary phase in these rocks, and plagioclase. This indicates that, in 
these samples, zircon crystallized cogenetically with the rock-forming silicate phases, consistent with the pres-
ence of primary Fe-Ti oxides and indicating that they are crystallization products of evolved melts.

The results of the U-Pb analyses are listed in Table S1 and illustrated in Figures 5–7. Overall, the Th-corrected 
zircon  206Pb/ 238U dates range from 14.56 to 15.31 Ma, with a single outlier at 15.82 Ma (Figure 5). All zircons 
except the 15.82 Ma outlier overlap concordia (Figure 6). 2σ errors on individual dates range from 0.02 to 1.03 
Myr, with a median of 0.13 Myr, and show a negative power-law correlation with the ratio of radiogenic to 
common lead (Pb*/Pbc) (Figure 7a). Calculated zircon Th/U ratio range from 0.9 to 3.9, a range comparable 
to those reported in Hayman et al. (2019). Pb*/Pbc is highly variable, ranging from 0.15 to 12.59. In addition 
to precision reducing dramatically at low Pb*/Pbc, the  206Pb/ 238U dates of grains with low Pb*/Pbc (<0.5) are 
younger than those with higher Pb*/Pbc (Figure 7b). This is true even within individual samples, with dates for 
grains with low Pb*/Pbc deviating from those with higher Pb*/Pbc (Figure 7b). This indicates that those analyses 
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that are dominated by common lead are unlikely to represent the true crystal-
lization age of these grains. We attribute this to inclusions that were observed 
prior to leaching and not fully removed during chemical abrasion, and that 
crystallization ages are likely to be best preserved in those grains with high 
Pb*/Pbc. For this reason, we do not incorporate grains with Pb*/Pbc below 
0.5 in the data presentation and discussion below.

The sample representing Gabbro 1 (312-1256D-217R-1, 36–39 cm) yielded 
single grain  206Pb/ 238U dates of 15.25–15.09 Ma (n = 9; Figures 5 and 6). 
All grains are mutually within error, and the population has a mean squared 
weighted deviation (MSWD) of 0.68. This is consistent with a single popula-
tion origin for zircon within this sample. These single grain dates, as well as 
their weighted mean (15.17 ± 0.03 Ma), are in agreement with the ID-TIMS 
data for Gabbro 1 reported by Hayman et al. (2019) (range 15.24–15.12 Ma; 
weighted mean 15.19  ±  0.04  Ma). They also overlap with the SIMS date 
for Gabbro 2 (15.23 ± 12; Hayman et al., 2019). Although caution has to be 
exercised when comparing zircon dates obtained using different methods, 
this suggests that Gabbro 1 and 2 crystallized in close temporal proximity.

The oxide diorite crosscutting Gabbro 1 (sample 312-1256D-214R-1, 
37–52 cm) contains a population of zircons (n = 9) with  206Pb/ 238U dates 
of 15.25–15.06  Ma (Figures  5 and  6); they are mutually within error 
(MSWD = 0.98). In addition, it contains a single outlier at 15.82 Ma; this 
grain has the highest Pb*/Pbc of any zircon analyzed in this study (Figure 7).

The diorite vein crosscutting Dyke Screen 2 (sample 335-1256D-Run19-RCJB-
Rock C), like Gabbro 1 and its crosscutting oxide diorite, define a statistically 
uniform population at the current level of precision, with a range in dates of 
15.22–14.94 Ma (n = 8; MSWD = 1.23; Figures 5 and 6). The tonalite dykelet 
crosscutting Dyke Screen 2 (sample 335-1256D-235R-1, 31–33 cm), on the 
other hand, does not appear to comprise a single statistical population: although 
its range in dates is very similar to the other dates rock units (15.12–15.29 Ma), 
two high-precision dates (2σ errors of 0.04 and 0.05 Ma) are not within error of 
each other, differing in age by a minimum of 0.02 Myr. This is also reflected 
by the relatively high MSWD for this sample (2.48; n = 7).

One of the two dated evolved plutonic patches in Dyke Screen 2, sample 
335-1256D-Run11-EXJB-J6, shows very similar results to Gabbro 1 and the 
crosscutting units: its single grain dates range from 15.31 to 15.14 Ma, and all 
dates are within error, with an MSWD of 1.19 for the population as a whole 
(n = 8; Figures 5 and 6). The second patch (sample 335-1256D-Run13-RCJB-
Rock A), however, deviates from all of the other dated units: its two zircons 
with Pb*/Pbc>0.5 both have dates of 14.94 Ma (Figures 5 and 6). The signif-
icance of this observation will be discussed below.

5.  Discussion
5.1.  Significance of Hole 1256D Zircon Dates

To date, significant variations in zircon dates of both individual grains and 
individual samples have been observed at (ultra)slow- and fast-spreading 
ridges, suggesting that crustal accretion is a protracted process (Baines 
et  al.,  2009; Grimes et  al.,  2008; C. J. Lissenberg et  al.,  2009; Rioux, 
Lissenberg, et al., 2012; Schwartz et al., 2005). However, at the high spread-
ing rates prevalent during the formation of the section drilled in Hole 1256D, 
the crust is carried away from the spreading center very rapidly. As a result, 

Figure 4.  Photomicrographs of samples (a and b) 335-1256D-Run11-EXJB-J6 
and (c) 335-1256D-Run13-RCJB-Rock A illustrating the nature of the 
granoblastic dykes (a) and the occurrence of zircon in diorite patches (b and 
c). Amp = amphibole; Pl = plagioclase; Ox = Fe-oxide; Zrn = zircon.
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Figure 5.  Zircon U-Pb results as a function of stratigraphic depth in Ocean Drilling Program Hole 1256D. The zircon U-Pb 
TIMS data for the single sample presented by Hayman et al. (2019) are included for comparison. Light gray datapoints are 
those with high Pb*/Pbc, and are excluded from the interpretations and discussion (see text for details). The stratigraphic log 
after Teagle et al. (2012).
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crustal accretion is expected to be rapid. Here, we examine the significance of the zircon dates of Hole 1256D, as 
well as the time span of magmatism that they record for the section.

It is striking that, with the exception of sample 335-1256D-Run13-RCJB-Rock A and the single zircon outlier in 
the oxide diorite at the top of the section (15.82 Ma), all samples show very similar dates. To test whether there 
is any statistically significant difference in dates within this population overall, we have calculated the MSWD of 
the full zircon population from all samples except 335-1256D-Run13-RCJB-Rock A, and excluding the 15.82 Ma 
outlier. The resulting MSWD is 1.4 (n = 41). This is consistent with the notion that, statistically, all of these 
samples behave as a single population, the weighted mean date of which is 15.19 ± 0.011 Ma. As pointed out by 
Hayman et al. (2019), this date fits well with the magnetic anomalies of the area: Hole 1256D was sited just east 
of the marine magnetic anomaly transition 5Bn-5Br, which corresponds to an age of ∼15.1 Ma using the time 
scale of Cande and Kent (1995) (Wilson, Hallenborg, et al., 2003; Figure 1). However, it should be noted that the 
weighted mean of 15.19 Ma is only significant if the population forms a normally distributed dataset defined by 
analytical error around a single crystallization date. There are a number of indications that this condition is not 
normally met for zircon in oceanic plutonic rocks. The first, and most direct, is that different zircons from the 
same sample are not always within error (C. J. Lissenberg et al., 2009; Rioux, Lissenberg, et al., 2012; Schwartz 
et  al.,  2005). This is also the case for one of the samples under consideration here: two single-grain zircon 
dates of the tonalite dykelet crosscutting Dyke Screen 2 (sample 335-1256D-235R-1, 31–33 cm) are not within 
error of one another, requiring a minimum duration of crystallization of 0.02 Myr. Furthermore, the youngest 
and oldest grain from the main population, which occur in samples sample 312-1256D-214R-1, 37–52 cm and 

Figure 6.  Concordia plots for zircons from Ocean Drilling Program Hole 1256D.

Figure 7.  (a) Relationship between 2σ error of  206Pb/ 238U U-Pb dates and the ratio of radiogenic to common lead (Pb*/Pbc). (b) Relationship between individual 
zircon  206Pb/ 238U U-Pb dates and Pb*/Pbc. At low Pb*/Pbc, precision reduces dramatically, and dates become anomalously young compared to zircons from the same 
sample with higher Pb*/Pbc. Consequently, data with Pb*/Pbc below 0.5 (gray field) have not been used in the interpretations (see text for discussion). Data points are 
color coded by the sample, using the same color scheme as in Figure 5.
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335-1256D-235R-1, 31–33 cm, respectively, require a minimum of 0.05 Myr 
crystallization (taking into account their respective errors). The second indi-
cation that oceanic zircons may not represent single crystallization episodes 
is that they tend to preserve a range of trace element concentrations, even 
within individual samples (Grimes et al., 2009). This is inconsistent with the 
crystallization of zircon at a single point in time; instead, it appears to crystal-
lize over an extended part of the liquid line of descent of its parental magma 
(C. J. Lissenberg et al., 2009). On the basis of these two observations, oceanic 
zircons are not expected to form uniform populations with a normal distribu-
tion related to analytical error. If so, weighted means do not represent statis-
tically valid dates. Nonetheless, at the current level of precision, the large 
majority of zircons dated in this study appear to define a single population. 
In Figure 8, we examine the distribution of dates of this population. Overall, 
the distribution is not unlike a normal distribution, albeit with a slight skew 
to older dates. Given the low MSWD of this population, as well as its distri-
bution (Figure 8), we consider 15.19 Ma to be the best estimate of the main 
episode of zircon crystallization in this section. The minimum spread of 0.05 
Myr between different zircons from this population indicates that the main 
crystallization episode likely spanned some tens of thousands of years.

Both dates (14.94  Ma) for one of the patches in Dyke Screen 2 (sample 
335-1256D-Run13-RCJB-Rock A) are on the young end of the spectrum 
defined by the other samples: they are younger than all of the other zircon 
grains dated in this study (Figure 8). As a result, when including these two 
grains in the main population of zircons dated in this study, its MSWD 
increases from 1.4 to 2.0. This indicates that, statistically, they are unlikely to 
form part of the main population. Furthermore, the patch is the only sample 
for which no dates fall in the 15.0–15.30  Ma range, and the most precise 
single-grain date for this patch (14.94 ± 0.17 Ma, 2σ) is outside the error of 

39% of all of the other dates presented in this study. The difference in dates between the main population and 
the patch is illustrated by their probability density distributions, which show only a small amount of overlap 
(Figure 8). The most likely interpretation, therefore, is that this patch is younger than the other units. It is not 
possible, however, to quantify just how much younger: the 14.94 Ma dates are within error of the younger dates 
of the main population, and whether the main population can be treated as a single crystallization event with a 
geologically significant mean date is uncertain (see above). Nonetheless, a maximum age difference is provided 
by the difference between the 15.19 Ma mean of the main population and the 14.94 Ma dates of the younger 
zircons. This maximum, which is 0.25 Myr, makes the assumption that the mean date of the main population is 
geologically significant, and ignores the errors on the dates. In reality, some of the younger zircons of the main 
population may have crystallized after 15.9 Ma, and the two dates from sample 335-1256D-Run13-RCJB-Rock 
A overlap within error with the majority of grains from the main population, making it likely that the actual age 
difference is smaller than 0.25 Myr.

The most remarkable data point is the 15.82  ±  0.11  Ma (2σ) Ma outlier in sample 312-1256D-214R-1, 
37–52 cm. Taking into account their respective errors, it is at least 0.51 Myr older than the weighted mean 
of the main population of zircons (15.19 ± 0.011 Ma). One possible explanation is that the anomalously old 
zircon is derived from the drilling mud used during drilling of the hole. Sepiolite, one of the types of mud used 
during scientific ocean drilling, contains abundant zircons with a wide range of ages (2–2889 Ma; Andrews 
et al., 2016). Of particular note is that the age distribution of this sepiolite mud shows a secondary peak at 
15.7 ± 0.2 Ma, which overlaps with the outlier in our data. However, the type of drilling mud used on Expedi-
tion 312 was not recorded, so it is not clear whether sepiolite was in fact used. Further, the Th/U of 3.7 of the 
15.82 Ma outlier is higher than those of the majority of sepiolite zircon. Hence, although we cannot rule out 
contamination, it appears unlikely that the outlier is related to drilling mud. Older outliers have been found in 
oceanic plutonic rocks before: Schwartz et al. (2005) describe zircon cores ∼1.5 Myr older than their surround-
ing rims in gabbroic rocks from the Atlantis Bank massif in the Indian Ocean. Since the zircon rim dates overlap 
with the magnetic age of the crust, the cores were interpreted as inherited fragments of zircon formed prior to 

Figure 8.  Ranked  206Pb/ 238U dates for all zircons dated in this study, separated 
into the main population (red) and those of sample 1256D-Run13-RCJB-Rock 
A (blue), with their respective probability density curves superimposed. Errors 
on dates are 2σ.
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the main episode of crustal magmatism. At (ultra)slow spreading rates prevalent at the Southwest Indian Ridge 
this is a plausible scenario since the lithosphere is significantly thicker than the crust (e.g., Schlindwein & 
Schmid, 2016). This situation leads to the potential for crystallization in the deeper parts of the (mantle) lith-
osphere, and the subsequent upward transport of the resulting plutons to the shallow part of the lithosphere by 
corner flow. There, the main axial magmatism has the potential to assimilate zircons from  the  older plutons that 
initially crystallized at depth (Schwartz et al., 2005). Anomalously old zircons have also been found in plutonic 
rocks from the Oman ophiolite (Rioux, Bowring, et al., 2012). These zircons occur as individual grains that are 
up to 16.8 Myr older than the young cluster of zircons interpreted to reflect the crystallization age of the rocks 
(Rioux, Bowring, et al., 2012). The origin of these outliers remains enigmatic: they may relate to the propaga-
tion of the spreading ridge into older crust, or may represent zircon grains that were derived from subducted 
material (Rioux, Bowring, et al., 2012). For the 15.82 Ma outlier at Hole 1256D, two of these three possible 
explanations are unsatisfactory. Unlike Oman, a contribution from subducted material is unlikely as the Hole 
1256D section did not form in the vicinity of a subduction zone. Similarly, because of the high rates of heat 
advection from the upwelling mantle and the large volumes of melt delivered to the crust, superfast-spreading 
ridge axes should not have thick lithosphere. The third possibility is that the zircon grain is inherited when 
the main magmatic pulse intrudes into older crust in a propagating rift or overlapping spreading center. Given 
the half-spreading rate on the Cocos plate during the formation of the Hole 1256D section (∼96  mm/yr; 
Wilson, 1996), 0.51 Myr of spreading corresponds to 49 km of crustal growth across-axis. Hence, the outlier 
could represent an inherited relic of crust that was subject to a propagating rift when it was 49 km off-axis. This 
is within the range of offsets recorded by current overlapping spreading centers at the Pacific, which can be up 
to 120 km, particularly where spreading rates are very fast (Martínez et al., 1997). However, the southernmost 
segment of the Pacific-Cocos Ridge had a length of at least 400 km, with no apparent evidence for significant 
ridge axial discontinuities. Furthermore, the magnetic anomalies around Hole 1256D, which have a spatial 
resolution of 1 km near the Hole and 5 km around it, show no indications for any offsets (Wilson, Hallenborg, 
et al., 2003). Hence, there is little supporting evidence for a propagating rift origin of the outlier. We conclude 
that its origin remains enigmatic.

5.2.  Implications for Oceanic Crustal Accretion at Hole 1256D

The dates presented in this paper, supplemented by those of Hayman et al. (2019), enable us to place constraints 
on the history of crustal accretion preserved in Hole 1256D. The main episode of zircon crystallization occurred 
around 15.19 Ma, and likely lasted at least 0.05 Myr. Given the half-spreading rate of the Cocos plate at the time 
of accretion of the section in the Miocene (96 mm/yr), this time span translates to 4.8 km of spreading. Although 
there are currently no mid-ocean ridges on Earth with spreading rates as high as the Pacific-Cocos ridge during 
the Miocene, seismic data from the fast-spreading East Pacific Rise provide constraints on the width of the 
magmatic system beneath the ridge axis. Seismic tomography and seafloor compliance data have shown that a 
low-velocity zone, comprising a region of partial melt, occupies most of the lower crust (Crawford et al., 1999; 
Crawford & Webb, 2002; Dunn et al., 2000). It is generally ∼8–10 km wide, and is overlain by a narrower lens 
with higher melt proportions (Sinton & Detrick, 1992). This axial melt lens or AML is observed along the major-
ity of the East Pacific Rise, and is generally <1 km but up to 4 km wide (Detrick et al., 1993; Mutter et al., 1995; 
Vera et al., 1990). Further constraints on the width of the crustal accretion zones come from the lava: although 
most lava along the East Pacific Rise erupt in the relatively narrow (hundreds of meters) axial summit through, 
volcanic rocks continue to erupt up to four km away from the ridge axis (Goldstein et al., 1994; Sims et al., 2003). 
All of these existing constraints fit well with the inference from the zircon data that the main episode of crystal-
lization occurred over a time span of 0.05 Myr.

During this main episode of crustal accretion, both Gabbro 1 and the oxide quartz diorite that cuts it was formed. 
Gabbro 1's occurrence as an ∼50 m thick body within the lower part of the sheeted dyke complex suggests that at 
the time of its intrusion, it formed the type of melt body that is imaged geophysically as the AML. Although its 
lateral extent is unknown, its thickness, coupled with the fact that it is composite lithologically, is consistent with 
what would be expected from an AML. If so, Gabbro 1 marks the highest level AML of what would be a series 
of AMLs over the course of the crustal accretion history of the section, consistent with the notion that the AML 
horizon is dynamic and may migrate vertically over hundreds of meters (France et al., 2009; Hooft et al., 1997). 
Given the overlap in dates, it is likely that Gabbro 2 formed around a similar time as Gabbro 1, marking the 
emplacement of another melt lens within the deep portion of the sheeted dyke complex.
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The diorite vein, tonalite dykelet and one of the diorite patches in the grano-
blastic dykes of Dyke Screen Two crystallized within the same time window 
as the gabbros. These veins and patches have been attributed to partial melt-
ing of the base of the sheeted dykes as a result of contact metamorphism 
by the main magmatic system below (Erdmann et  al.,  2015, 2017; France 
et al., 2009, 2010; Teagle et al., 2012; Zhang et al., 2017). The fact that the 
zircon dates of the diorite vein, the tonalite dykelet, and one of the diorite 
patches are indistinguishable from that of Gabbro 1, and that this main popu-
lation of dates is in keeping with the magnetic age for the crust, is consistent 
with this scenario: both Gabbro 1 and the partial melt in the metamorphosed 
granoblastic dykes are formed as part of the main axial sequence. The second 
diorite patch in the granoblastic dykes, however, appears to postdate this 
axial sequence. Although it is not possible to quantify the age difference, the 
offset is <0.25 Myr, which equates to <24 km of spreading. Hence, this dior-
ite may represent an off-axis intrusion. Off-axis sills have been documented 
in seismic studies, extending up to eight km from the axial low-velocity zone 
(Canales et al., 2012). Furthermore, sills at the Moho have been found up 
to 22  km off-axis (Garmany,  1989). The lava stratigraphy of Hole 1256D 
is capped by a 75  m thick lava pond, which has been interpreted to have 
erupted off-axis (Crispini et al., 2006; Tartarotti et al., 2009; Tominaga & 
Umino, 2010; Wilson, Teagle, et al., 2003). There is thus a record of off-axis 
magmatism at fast-spreading ridges in general, and at 1256D in particular. 
Hence, it is possible that the diorite patch reflects the late-stage delivery of 
melts to the crust as it is carried off-axis. In this scenario, it would represent 
an intrusion of melt that underwent significant amounts of differentiation 

from off-axis basalt. However, the diffuse margin of the patch with the granoblastic dykes suggests that the host 
rocks were still at elevated temperatures when the patch intruded, which suggests that either the section remained 
hot for an extended period of time, or that the age difference between the patch and main population is relatively 
small. Alternatively, we cannot completely rule out that the patch may be of the same age as the other intrusions 
in the granoblastic dykes: although an age difference appears to be present (Figures 5 and 8), the associated errors 
allow for zircon from the patch to have crystallized synchronously to at least some zircons of the main population.

5.3.  Time Span of Crustal Accretion Across the Spreading Rate Spectrum

With the addition of superfast-spreading crust to the global zircon geochronology dataset for oceanic crust, there 
are now data on the duration of crustal accretion across nearly the full range of spreading rates of the global 
mid-ocean ridge system. In Figure 9, we examine the pattern that emerges. As noted before (Grimes et al., 2011; 
Rioux, Lissenberg, et al., 2012), there appears to be little difference in the duration of crustal accretion between 
slow- and fast-spreading ridges, with most sites recording periods of ∼100–300 kyr. Our new data suggest that 
this observation extends to superfast-spreading ridges. This observation likely reflects the competing effects 
of the longevity of the magmatic system on the one hand and the rate of crustal transport off-axis on the other 
(Rioux, Lissenberg, et al., 2012). Faster spreading ridges feature more robust—and hence longer-lived—magmatic 
systems but are carried off-axis rapidly. Magmatic events at lower-spreading ridges may be shorter-lived, but the 
crust remains in the axial valley for longer periods of time. The net effect is that the total duration recorded by 
the zircon record is similar. Ultraslow-spreading crust may be an exception to this: the 1.5 Myr span recorded 
by zircon at the Southwest Indian Ridge far exceeds that observed elsewhere (Figure 9). This likely reflects the 
fact that the ultraslow-spreading lithosphere is substantially thicker than slow- to fast-spreading ridge lithosphere 
(Bennett et al., 2019; Schlindwein & Schmid, 2016). This is because mantle upwelling is slow, leading to reduced 
melt production and heat advection. The cool thermal structure results in thick lithosphere, with earthquake data 
indicating that the brittle lithosphere may extend to 35 km depth (Schlindwein & Schmid, 2016). This promotes 
initial crystallization of melts deep in the mantle lithosphere, evidence for which has recently been found in the 
melt inclusion record (Bennett et al., 2019). The subsequent upward transport of these plutons by corner flow, and 
the intrusion of melts into them at shallower levels, accounts for the extended time span of zircon crystallization 
(Schwartz et al., 2005). Although the lithosphere at slow-spreading ridges may locally also be thicker than the 

Figure 9.  Duration of oceanic crustal accretion as revealed by zircon 
geochronology as a function of spreading rate. Vertical extent of the 
various bars represent either the range present in different studies from the 
same location (e.g., Atlantis Bank [15 mm/yr]), or the uncertainties on the 
duration as quoted in the original papers (e.g., Atlantis Massif [24 mm/yr], 
Vema [32 mm/yr], Hess Deep [133 mm/yr], this study [220 mm/yr]). Data 
from Baines et al. (2009); Grimes et al. (2011); Grimes et al. (2008); C. J. 
Lissenberg et al. (2009); Rioux et al. (2016); Rioux, Lissenberg, et al. (2012); 
Schwartz et al. (2005) and this paper. Boundaries between different classes of 
ocean ridges from Dick et al. (2003).
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magmatic crust (Cannat,  1996), crystallization depths of plutons are thought to be in the order of ∼6–7  km 
(Grimes et al., 2011; C. J. Lissenberg et al., 2016; Schoolmeesters et al., 2012), which is insufficient to lead to 
the extended periods of accretion recorded at the Southwest Indian Ridge. Hence, there appears to be a transition 
between very long (up to 1.5 Myr) duration of crustal accretion at ultraslow-spreading ridges characterized by 
thick lithosphere, to ∼100–300 kyr periods at slow-to superfast-spreading ridges.

6.  Conclusions
Zircon U-Pb geochronology of plutonic rocks recovered from ODP Hole 1256D, which formed during an episode 
of superfast spreading at the Pacific-Cocos plate boundary, has revealed the following:

1.	 �The main episode of crustal accretion occurred around 15.19 Ma, which is agreement with the seafloor age as 
estimated from magnetic anomalies. This episode likely spanned some tens of thousands of years and formed 
the main axial sequence. This comprises intrusions of gabbro into the base of the sheeted dyke complex as 
well as the formation and crystallization of partial melts of the deep part of the sheeted dykes.

2.	 �One sample apparently postdates this main episode. Although we cannot quantify the age difference, it was 
most likely less than 0.25 Myr. This sample may represent an off-axis intrusion, although, based on the uncer-
tainties of both the main population and the dates of the younger sample, we cannot rule out that it formed as 
part of the axial suite.

3.	 �The time span of crustal accretion of oceanic crust is similar (∼100–300 kyr) across large parts of the spread-
ing rate spectrum from slow- to superfast-spreading ridges, but may be substantially longer (up to 1.5 Myr) at 
ultraslow-spreading ridges characterized by thick lithosphere.

Data Availability Statement
Data can be accessed at the UK National Geoscience Data Centre (J. Lissenberg et al., 2023).
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