56 research outputs found

    Pacific Atmospheric Sulfur Experiment (PASE): dynamics and chemistry of the south Pacific tropical trade wind regime

    Get PDF
    The Pacific Atmospheric Sulfur Experiment (PASE) was a comprehensive airborne study of the chemistry and dynamics of the tropical trade wind regime (TWR) east of the island of Kiritibati (Christmas Island, 157Âș, 20â€Č W, 2Âș 52â€Č N). Christmas Island is located due south of Hawaii. Geographically it is in the northern hemisphere yet it is 6–12Âș south of the intertropical convergence zone (ITCZ) which places it in the southern hemisphere meteorologically. Christmas Island trade winds in August and September are from east south east at 3–15 ms−1. Clouds, if present, are fair weather cumulus located in the middle layer of the TWR which is frequently labeled the buffer layer (BuL). PASE provided clear support for the idea that small particles (80 nm) were subsiding into the tropical trade wind regime (TWR) where sulfur chemistry transformed them to larger particles. Sulfur chemistry promoted the growth of some of these particles until they were large enough to activate to cloud drops. This process, promoted by sulfur chemistry, can produce a cooling effect due to the increase in cloud droplet density and changes in cloud droplet size. These increases in particle size observed in PASE promote additional cooling due to direct scattering from the aerosol. These potential impacts on the radiation balance in the TWR are enhanced by the high solar irradiance and ocean albedo of the TWR. Finally because of the large area involved there is a large factional impact on earth’s radiation budget. The TWR region near Christmas Island appears to be similar to the TWR that persists in August and September, from southwest of the Galapagos to at least Christmas Island. Transport in the TWR between the Galapagos and Christmas involves very little precipitation which could have removed the aerosol thus explaining at least in part the high concentrations of CCN (≈300 at 0.5% supersaturation) observed in PASE. As expected the chemistry of sulfur in the trade winds was found to be initiated by the emission of DMS into the convective boundary layer (BL, the lowest of three layers). However, the efficiency with which this DMS is converted to SO2 has been brought into further question by this study. This unusual result has come about as result of our using two totally different approaches for addressing this long standing question. In the first approach, based on accepted kinetic rate constants and detailed steps for the oxidation of DMS reflecting detailed laboratory studies, a DMS to SO2 conversion efficiency of 60–73% was determined. This range of values lies well within the uncertainties of previous studies. However, using a completely different approach, involving a budget analysis, a conversion value of 100% was estimated. The latter value, to be consistent with all other sulfur studies, requires the existence of a completely independent sulfur source which would emit into the atmosphere at a source strength approximately half that measured for DMS under tropical Pacific conditions. At this time, however, there is no credible scientific observation that identifies what this source might be. Thus, the current study has opened for future scientific investigation the major question: is there yet another major tropical marine source of sulfur? Of equal importance, then, is the related question, is our global sulfur budget significantly in error due to the existence of an unknown marine source of sulfur? Pivotal to both questions may be gaining greater insight about the intermediate DMS oxidation species, DMSO, for which rather unusual measurements have been reported in previous marine sulfur studies. The 3 pptv bromine deficit observed in PASE must be lost over the lifetime of the aerosol which is a few days. This observation suggests that the primary BrO production rate is very small. However, considering the uncertainties in these observations and the possible importance of secondary production of bromine radicals through aerosol surface reactions, to completely rule out the importance of bromine chemistry under tropical conditions at this time cannot be justified. This point has been brought into focus from prior work that even at levels of 1 pptv, the effect of BrO oxidation on DMS can still be quite significant. Thus, as in the case of DMS conversion to SO2, future studies will be needed. In the latter case there will need to be a specific focus on halogen chemistry. Such studies clearly must involve specific measurements of radical species such as BrO

    Research Reports Andean Past 6

    Get PDF

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2 and reports on five research projects.National Institutes of Health Contract 2 R01 DC00117National Institutes of Health Contract 1 R01 DC02032National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Contract N01 DC22402National Institutes of Health Grant R01-DC001001National Institutes of Health Grant R01-DC00270National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Air Warfare Center Training Systems Division Contract N61339-94-C-0087U.S. Navy - Naval Air Warfare Center Training System Division Contract N61339-93-C-0055U.S. Navy - Office of Naval Research Grant N00014-93-1-1198National Aeronautics and Space Administration/Ames Research Center Grant NCC 2-77

    Gray matter network associated with risk for Alzheimer\u27s disease in young to middle-aged adults

    No full text
    The apolipoprotein E (APOE) Δ4 allele increases the risk for late-onset Alzheimer\u27s disease (AD) and age-related cognitive decline. We investigated whether Δ4 carriers show reductions in gray matter volume compared with Δ4 non-carriers decades before the potential onset of AD dementia or healthy cognitive aging. Fourteen cognitively normal Δ4 carriers, aged 26 to 45 years, were compared with 10 age-matched, Δ4 non-carriers using T1-weighted volumetric magnetic resonance imaging (MRI) scans. All had reported first- or second-degree family histories of dementia. Group differences in gray matter were tested using voxel-based morphometry (VBM) and a multivariate model of regional covariance, the Scaled Subprofile Model (SSM). A combination of the first two SSM MRI gray matter patterns distinguished the APOE Δ4 carriers from non-carriers. This combined pattern showed gray matter reductions in bilateral dorsolateral and medial frontal, anterior cingulate, parietal, and lateral temporal cortices with covarying relative increases in cerebellum, occipital, fusiform, and hippocampal regions. With these gray matter differences occurring decades before the potential onset of dementia or cognitive aging, the results suggest longstanding, gene-associated differences in brain morphology that may lead to preferential vulnerability for the later effects of late-onset AD or healthy brain aging

    Cholesterol-related genetic risk scores are associated with hypometabolism in Alzheimer's-affected brain regions

    No full text
    We recently implicated a cluster of nine single nucleotide polymorphisms from seven cholesterol-related genes in the risk of Alzheimer's disease (AD) in a European cohort, and we proposed calculating an aggregate cholesterol-related genetic score (CREGS) to characterize a person's risk. In a separate study, we found that apolipoprotein E (APOE) epsilon4 gene dose, an established AD risk factor, was correlated with fluorodeoxyglucose (FDG) positron emission tomography (PET) measurements of hypometabolism in AD-affected brain regions in a cognitively normal American cohort, and we proposed using PET as a presymptomatic endophenotype to help assess putative modifiers of AD risk. Thus, the objective in the present study is to determine whether CREGS is related to PET measurements of hypometabolism in AD-affected brain regions. DNA and PET data from 141 cognitively normal late middle-aged APOE epsilon4 homozygotes, heterozygotes and noncarriers were analyzed to evaluate the relationship between CREGS and regional PET measurements. Cholesterol-related genetic risk scores were associated with hypometabolism in AD-affected brain regions, even when controlling for the effects of APOE epsilon4 gene dose. The results support the role of cholesterol-related genes in the predisposition to AD and support the value of neuroimaging in the presymptomatic assessment of putative modifiers of AD risk
    • 

    corecore