113 research outputs found

    Alteration of host cell ubiquitination by the intracellular bacterial pathogen Coxiella burnetii

    Get PDF
    The intracellular bacterial agent of Q fever, Coxiella burnetii, replicates within a phagolysosomelike parasitophorous vacuole (PV) in human macrophages and delivers effector proteins to the host cytosol via a Dot/Icm type IV secretion system (T4SS). The T4SS effectors are critical for PV formation and prevention of host cell death that allows sufficient time for bacterial replication. Recruitment of ubiquitin-related components to the C. burnetii PV is also predicted to be involved in PV formation and bacterial replication and is likely controlled by effector proteins. In this study, we assessed the role of the Dot/Icm T4SS in regulating ubiquitination by comparing subcellular localization of ubiquitinated proteins between cells infected with C. burnetii and a mutant that lacks a functional T4SS. Fluorescence microscopy showed ubiquitinated proteins surrounding wild-type C. burnetii PV but not phagosomes harboring T4SS-defective organisms. Immunoblot analysis showed altered ubiquitinated protein profiles throughout infection, suggesting C. burnetii impacts post-translational modification of host cell and/or bacterial proteins. Future studies will determine how T4SS-mediated recruitment of ubiquitinated proteins impacts C. burnetii-host cell interactions and eventual development of diseas

    Measuring Multidimensional Poverty in a Complex Environment; Identifying the Sensitive Links

    Get PDF
    The central hypothesis of this study is that a holistic, systems-based approach employing multiple analytical tools is useful for identifying the most sensitive links within complex communities to down-scale global development priorities such as the United Nations Sustainable Development Goals. Results of latent factor regression, canonical correlation analysis, and structural equation modeling were compared for multiple, publically-available data sets for two rural regions in Brazil and Guatemala. The results of this study confirm previously reported findings, and collectively support the central hypothesis demonstrating a pathway for linking global priorities with the complex realities of \u27on-the-ground\u27 development conditions in specific communities

    Utilizing Structural Equation Modeling in the Development of a Standardized Intervention Assessment Tool

    Get PDF
    There are numerous approaches to measuring multidimensional poverty; these include the Human Development Index and the Multidimensional Poverty Index among others [1]. However, a gap in the literature is found when intervention assessment tools are investigated. The idea of creating a standardized assessment tool would allow for a deeper understanding of poverty on a per community basis. Structural Equation Modeling (SEM) offers a robust platform in which to establish such a tool. An overview of SEM and several other general approaches to data aggregation are addressed. The notion of a standardized intervention assessment tool is discussed; this is focused on utilizing the SEM platform for this tool. Further, previous works by Divelbiss [2] and Voth-Gaeddert [3], [4] are discussed. To date SEM has shown to handle adaptability of differing environments positively. Divelbiss reported on the SEM multivariable poverty model within villages of Guatemala and Voth-Gaeddert reports on the applicability of this model used in a dissimilar environment in Brazil. These findings suggest feasibility in the utilization of a SEM platform for a standardized intervention assessment tool

    Obligate intracellular bacteria: Evasion and adaptative tactics shaping the host-pathogen interface

    Get PDF
    Funding Information: Work in IS laboratory was funded by the European Regional Development Fund (ERDF), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation and Portuguese national funds via FCT – Fundação para a Ciência e a Tecnologia, under project[s] POCI-01-0145-FEDER-029592 (PTDC/SAU-INF/29592/2017) (UNDOHIJACK), UIDB/04539/2020, and UIDP/04539/2020 (CIBB). Work in LJM laboratory has been supported by FCT through grants PTDC/BIA-MIC/28503/2017 (to LJM), UIDP/04378/2020 and UIDB/04378/2020 (UCIBIO), and LA/P/0140/2020 (i4HB).publishersversionpublishe

    Effects of non-universal large scales on conditional structure functions in turbulence

    Full text link
    We report measurements of conditional Eulerian and Lagrangian structure functions in order to assess the effects of non-universal properties of the large scales on the small scales in turbulence. We study a 1m ×\times 1m ×\times 1.5m flow between oscillating grids which produces Rλ=285R_\lambda=285 while containing regions of nearly homogeneous and highly inhomogeneous turbulence. Large data sets of three-dimensional tracer particle velocities have been collected using stereoscopic high speed cameras with real-time image compression technology. Eulerian and Lagrangian structure functions are measured in both homogeneous and inhomogeneous regions of the flow. We condition the structure functions on the instantaneous large scale velocity or on the grid phase. At all scales, the structure functions depend strongly on the large scale velocity, but are independent of the grid phase. We see clear signatures of inhomogeneity near the oscillating grids, but even in the homogeneous region in the center we see a surprisingly strong dependence on the large scale velocity that remains at all scales. Previous work has shown that similar correlations extend to very high Reynolds numbers. Comprehensive measurements of these effects in a laboratory flow provide a powerful tool for assessing the effects of shear, inhomogeneity and intermittency of the large scales on the small scales in turbulence

    MicroRNAs Contribute to the Host Response to Coxiella burnetii

    Get PDF
    MicroRNAs (miRNAs), a class of small non-coding RNAs, are critical to gene regulation in eukaryotes. They are involved in modulating a variety of physiological processes, including the host response to intracellular infections. Little is known about miRNA functions during infection by Coxiella burnetii, the causative agent of human Q fever. This bacterial pathogen establishes a large replicative vacuole within macrophages by manipulating host processes such as apoptosis and autophagy. We investigated miRNA expression in C. burnetii-infected macrophages and identified several miRNAs that were down- or up-regulated during infection. We further explored the functions of miR-143-3p, an miRNA whose expression is down-regulated in macrophages infected with C. burnetii, and show that increasing the abundance of this miRNA in human cells results in increased apoptosis and reduced autophagy – conditions that are unfavorable to C. burnetii intracellular growth. In sum, this study demonstrates that C. burnetii infection elicits a robust miRNA-based host response, and because miR-143-3p promotes apoptosis and inhibits autophagy, down-regulation of miR-143-3p expression during C. burnetii infection likely benefits the pathogen

    Dining in: intracellular bacterial pathogen interplay with autophagy

    Get PDF
    Intracellular bacterial pathogens have evolved many ways to manipulate host cells for successful infection. Many of these pathogens use specialized secretion systems to inject bacterial proteins into the host cytosol that manipulate cellular processes to favor infection. Autophagy is a eukaryotic cellular remodeling process with a critical role in many diseases, including bacterial clearance. A growing field of research highlights mechanisms used by intracellular bacteria to manipulate autophagy as a pro-survival strategy. This review focuses on a select group of bacterial pathogens with diverse intracellular lifestyles that exploit autophagy-derived nutrients and membrane for survival. This group of pathogens uses secretion systems and specific effectors to subvert distinct components of autophagy. By understanding how intracellular pathogens manipulate autophagy, we gain insight not only into bacterial pathogenesis but also host cell signaling and autophagolysosome maturation

    Host Kinase Activity is Required for Coxiella burnetii Parasitophorous Vacuole Formation

    Get PDF
    Coxiella burnetii is the etiologic agent of human Q fever and targets alveolar phagocytic cells in vivo wherein the pathogen generates a phagolysosome-like parasitophorous vacuole (PV) for replication. C. burnetii displays a prolonged growth cycle, making PV maintenance critical for bacterial survival. Previous studies showed that C. burnetii mediates activation of eukaryotic kinases to inhibit cell death, indicating the importance of host signaling during infection. In the current study, we examined the role of eukaryotic kinase signaling in PV establishment. A panel of 113 inhibitors was analyzed for their impact on C. burnetii infection of human THP-1 macrophage-like cells and HeLa cells. Inhibition of 11 kinases or two phosphatases altered PV formation and prevented pathogen growth, with most inhibitor-treated cells harboring organisms in tight-fitting phagosomes, indicating kinase/phosphatase activation is required for PV maturation. Five inhibitors targeted protein kinase C (PKC), suggesting a critical role for this protein during intracellular growth. The PKC-specific substrate MARCKS was phosphorylated at 24 h post-infection and remained phosphorylated through 5 days post-infection, indicating prolonged regulation of the PKC pathway by C. burnetii. Infection also altered the activation status of p38, myosin light chain kinase, and cAMP-dependent protein kinase, suggesting C. burnetii subverts numerous phosphorylation cascades. These results underscore the importance of intracellular host signaling for C. burnetii PV biogenesis

    Integrated active and passive control design methodology for the LaRC CSI evolutionary model

    Get PDF
    A general design methodology to integrate active control with passive damping was demonstrated on the NASA LaRC CSI Evolutionary Model (CEM), a ground testbed for future large, flexible spacecraft. Vibration suppression controllers designed for Line-of Sight (LOS) minimization were successfully implemented on the CEM. A frequency-shaped H2 methodology was developed, allowing the designer to specify the roll-off of the MIMO compensator. A closed loop bandwidth of 4 Hz, including the six rigid body modes and the first three dominant elastic modes of the CEM was achieved. Good agreement was demonstrated between experimental data and analytical predictions for the closed loop frequency response and random tests. Using the Modal Strain Energy (MSE) method, a passive damping treatment consisting of 60 viscoelastically damped struts was designed, fabricated and implemented on the CEM. Damping levels for the targeted modes were more than an order of magnitude larger than for the undamped structure. Using measured loss and stiffness data for the individual damped struts, analytical predictions of the damping levels were very close to the experimental values in the (1-10) Hz frequency range where the open loop model matched the experimental data. An integrated active/passive controller was successfully implemented on the CEM and was evaluated against an active-only controller. A two-fold increase in the effective control bandwidth and further reductions of 30 percent to 50 percent in the LOS RMS outputs were achieved compared to an active-only controller. Superior performance was also obtained compared to a High-Authority/Low-Authority (HAC/LAC) controller
    • …
    corecore