526 research outputs found
Parameterizing probabilities for estimating age-composition distributions for mixture models
When estimating parameters that constitute a discrete probability distribution {pj}, it is difficult to determine how constraints should be made to guarantee that the estimated parameters { pˆj} constitute a probability distribution (i.e., pˆj>0, Σ pˆj =1). For age distributions estimated from mixtures of length-at-age distributions, the EM (expectationmaximization) algorithm (Hasselblad, 1966; Hoenig and Heisey, 1987; Kimura and Chikuni, 1987), restricted least squares (Clark, 1981), and weak quasisolutions (Troynikov, 2004) have all been used. Each of these methods appears to guarantee that the estimated distribution will be a true probability distribution with all categories greater than or equal to zero and with individual probabilities that sum to one. In addition, all these methods appear to provide a theoretical basis for solutions that will be either maximum-likelihood estimates or at least convergent to a probability distribu
Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed Graphs
We develop two different methods to achieve subexponential time parameterized
algorithms for problems on sparse directed graphs. We exemplify our approaches
with two well studied problems.
For the first problem, {\sc -Leaf Out-Branching}, which is to find an
oriented spanning tree with at least leaves, we obtain an algorithm solving
the problem in time on directed graphs
whose underlying undirected graph excludes some fixed graph as a minor. For
the special case when the input directed graph is planar, the running time can
be improved to . The second example is a
generalization of the {\sc Directed Hamiltonian Path} problem, namely {\sc
-Internal Out-Branching}, which is to find an oriented spanning tree with at
least internal vertices. We obtain an algorithm solving the problem in time
on directed graphs whose underlying
undirected graph excludes some fixed apex graph as a minor. Finally, we
observe that for any , the {\sc -Directed Path} problem is
solvable in time , where is some
function of \ve.
Our methods are based on non-trivial combinations of obstruction theorems for
undirected graphs, kernelization, problem specific combinatorial structures and
a layering technique similar to the one employed by Baker to obtain PTAS for
planar graphs
Quantitative wave function analysis for excited states of transition metal complexes
The character of an electronically excited state is one of the most important
descriptors employed to discuss the photophysics and photochemistry of
transition metal complexes. In transition metal complexes, the interaction
between the metal and the different ligands gives rise to a rich variety of
excited states, including metal-centered, intra-ligand, metal-to-ligand charge
transfer, ligand-to-metal charge transfer, and ligand-to-ligand charge transfer
states. Most often, these excited states are identified by considering the most
important wave function excitation coefficients and inspecting visually the
involved orbitals. This procedure is tedious, subjective, and imprecise.
Instead, automatic and quantitative techniques for excited-state
characterization are desirable. In this contribution we review the concept of
charge transfer numbers---as implemented in the TheoDORE package---and show its
wide applicability to characterize the excited states of transition metal
complexes. Charge transfer numbers are a formal way to analyze an excited state
in terms of electron transitions between groups of atoms based only on the
well-defined transition density matrix. Its advantages are many: it can be
fully automatized for many excited states, is objective and reproducible, and
provides quantitative data useful for the discussion of trends or patterns. We
also introduce a formalism for spin-orbit-mixed states and a method for
statistical analysis of charge transfer numbers. The potential of this
technique is demonstrated for a number of prototypical transition metal
complexes containing Ir, Ru, and Re. Topics discussed include orbital
delocalization between metal and carbonyl ligands, nonradiative decay through
metal-centered states, effect of spin-orbit couplings on state character, and
comparison among results obtained from different electronic structure methods.Comment: 47 pages, 19 figures, including supporting information (7 pages, 1
figure
No kin discrimination in female mate choice of a parasitoid with complementary sex determination
Discrimination against kin as mates, via genetic or environmentally derived cues of relatedness, can prevent inbreeding and thus enhance individual fitness and promote population survival. Sex in the parasitoid wasp Cotesia glomerata L. (Hymenoptera: Braconidae) is determined by one locus with multiple alleles, a mechanism termed single-locus complementary sex determination (sl-CSD). Under sl-CSD, haploid individuals are males, whereas diploid individuals are females when heterozygous at the sex determination locus but males when homozygous. In species with sl-CSD, inbreeding leads to increased incidence of matings between individuals sharing an allele at the sex locus and thus to increased diploid male production. Diploid males cause an undesirable sex ratio distortion and can be of inferior fitness. To evade these deleterious effects, species with sl-CSD are expected to avoid inbreeding. We investigated whether C. glomerata females discriminate against close kin as mating partners. We performed a mate choice experiment, which allowed us to distinguish between kin discrimination based on the perception of phenotype-related cues and kin discrimination based on the perception of cues associated with the developmental environment. As kin discrimination is often mediated through cuticular hydrocarbons (CHCs), we additionally examined composition of the CHC profiles of males. We found no evidence for discrimination against related or familiar males nor for differences in the CHC profiles of males. These results indicate that kin discrimination is not a relevant inbreeding avoidance strategy in C. glomerat
Linking the evolution of terrestrial interiors and an early outgassed atmosphere to astrophysical observations
A terrestrial planet is molten during formation and may remain so if subject
to intense insolation or tidal forces. Observations continue to favour the
detection and characterisation of hot planets, potentially with large outgassed
atmospheres. We aim to determine the radius of hot Earth-like planets with
large outgassed atmospheres and explore differences between molten and solid
silicate planets and their influence on the mass-radius relationship and
transmission and emission spectra. An interior-atmosphere model, combined with
static structure calculations, tracks the evolving radius of a rocky mantle
that is outgassing CO and HO. Synthetic emission and transmission
spectra are generated for CO and HO dominated atmospheres. Atmospheres
dominated by CO suppress the outgassing of HO to a greater extent than
previously realised, as previous studies have applied an erroneous relationship
between volatile mass and partial pressure. We therefore predict more HO
can be retained by the interior during the later stages of magma ocean
crystallisation. Furthermore, formation of a lid at the surface can tie
outgassing of HO to the efficiency of heat transport through the lid,
rather than the atmosphere's radiative timescale. Contraction of the mantle as
it solidifies gives radius decrease, which can partly be offset by
addition of a relatively light species to the atmosphere. We conclude that a
molten silicate mantle can increase the radius of a terrestrial planet by
around compared to its solid counterpart, or equivalently account for a
decrease in bulk density. An outgassing atmosphere can perturb the total
radius according to its speciation. Atmospheres of terrestrial planets around
M-stars that are dominated by CO or HO can be distinguished by
observing facilities with extended wavelength coverage (e.g., JWST).Comment: 19 pages, published in A&A, abstract shortene
Investors with too many options?
During the last decade, markets for covered warrants (bank-issued options) have flourished in Europe and Asia. In these markets, investors often face a choice between many instruments that differ only slightly from each other. Based on retail trades in call options on the German DAX index, this paper documents substantial price dispersion across securities that are close substitutes. Moreover, investors generally fail to identify attractively priced options. The results suggest that the observed product proliferation imposes a substantial search cost on investors even though the products are homogenous and their pricing is well understood. The search cost is estimated to average 1% of the amount invested, the same order of magnitude as the average spread
Mitochondrial biogenesis and dynamics in the developing and diseased heart
The mitochondrion is a complex organelle that serves essential roles in energy transduction, ATP production, and a myriad of cellular signaling events. A finely tuned regulatory network orchestrates the biogenesis, maintenance, and turnover of mitochondria. The high-capacity mitochondrial system in the heart is regulated in a dynamic way to generate and consume enormous amounts of ATP in order to support the constant pumping function in the context of changing energy demands. This review describes the regulatory circuitry and downstream events involved in mitochondrial biogenesis and its coordination with mitochondrial dynamics in developing and diseased hearts
Biomass Production of the EDEN ISS Space Greenhouse in Antarctica During the 2018 Experiment Phase
The EDEN ISS greenhouse is a space-analog test facility near the German Neumayer III station in Antarctica. The facility is part of the project of the same name and was designed and built starting from March 2015 and eventually deployed in Antarctica in January 2018. The nominal operation of the greenhouse started on February 7th and continued until the 20th of November. The purpose of the facility is to
enable multidisciplinary research on topics related to future plant cultivation on human space exploration missions. Research on food quality and safety, plant health
monitoring, microbiology, system validation, human factors and horticultural sciences was conducted. Part of the latter is the determination of the biomass production of the
different crops. The data on this topic is presented in this paper. During the first season 26 different crops were grown on the 12.5 m2 cultivation area of the greenhouse. A large
number of crops were grown continuously throughout the 9 months of operation, but there were also crops that were only grown a few times for test purposes. The focus of this season was on growing lettuce, leafy greens and fresh vegetables. In total more than 268 kg of edible biomass was produced by the EDEN ISS greenhouse facility in 2018. Most of the harvest was cucumbers (67 kg), lettuces (56 kg), leafy greens (49 kg),
and tomatoes (50 kg) complemented with smaller amounts of herbs (12 kg), radish (8 kg), and kohlrabi (19 kg). The environmental set points for the crops were 330–600
µmol/(m2∗s) LED light, 21◦C, ∼65% relative humidity, 1000 ppm and the photoperiod was 17 h per day. The overall yearly productivity of the EDEN ISS greenhouse in 2018 was 27.4 kg/m2, which is equal to 0.075 kg/(m2∗d). This paper shows in detail the data on edible and inedible biomass production of each crop grown in the EDEN ISS greenhouse in Antarctica during the 2018 season
Fragmentation of Molecules by Fast Ion Impact
Single ionization of simple molecules, e.g. H2, CO2, by fast charged particle impact has been studied using a reaction microscope. By measuring the momenta of the emitted electron and the recoil ionic fragment in coincidence, channel-selective low-energy electron spectra have been recorded. The experimental cross sections will be presented, compared with the predictions of state-of-the-art CDW-EIS calculations and discussed in terms of molecular effects such as (i) autoionization and predissociation channels, (ii) interference patterns resulting from the two-center geometry of the diatomic molecule, in analogy to Young\u27s double-slit experiment and (iii) dependence of the electron emission on the orientation of the molecular axis
Lithologic Controls on Silicate Weathering Regimes of Temperate Planets
Weathering of silicate rocks at a planetary surface can draw down CO2 from the atmosphere for eventual burial and long-term storage in the planetary interior. This process is thought to provide essential negative feedback to the carbonate-silicate cycle (carbon cycle) to maintain clement climates on Earth and potentially similar temperate exoplanets. We implement thermodynamics to determine weathering rates as a function of surface lithology (rock type). These rates provide upper limits that allow the maximum rate of weathering in regulating climate to be estimated. This modeling shows that the weathering of mineral assemblages in a given rock, rather than individual minerals, is crucial to determine weathering rates at planetary surfaces. By implementing a fluid-transport-controlled approach, we further mimic chemical kinetics and thermodynamics to determine weathering rates for three types of rocks inspired by the lithologies of Earthʼs continental and oceanic crust, and its upper mantle. We find that thermodynamic weathering rates of a continental crust-like lithology are about one to two orders of magnitude lower than those of a lithology characteristic of the oceanic crust. We show that when the CO2 partial pressure decreases or surface temperature increases, thermodynamics rather than kinetics exerts a strong control on weathering. The kinetically and thermodynamically limited regimes of weathering depend on lithology, whereas the supply-limited weathering is independent of lithology. Our results imply that the temperature sensitivity of thermodynamically limited silicate weathering may instigate a positive feedback to the carbon cycle, in which the weathering rate decreases as the surface temperature increases
- …