115 research outputs found

    Mate Choice and the Evolutionary Stability of a Fixed Threshold in a Sequential Search Strategy

    Get PDF
    The sequential search strategy is a prominent model of searcher behavior, derived as a rule by which females might sample and choose a mate from a distribution of prospective partners. The strategy involves a threshold criterion against which prospective mates are evaluated. The optimal threshold depends on the attributes of prospective mates, which are likely to vary across generations or within the lifetime of searchers due to stochastic environmental events. The extent of this variability and the cost to acquire information on the distribution of the quality of prospective mates determine whether a learned or environmentally canalized threshold is likely to be favored. In this paper, we determine conditions on cross-generational perturbations of the distribution of male phenotypes that allow for the evolutionary stability of an environmentally canalized threshold. In particular, we derive conditions under which there is a genetically determined threshold that is optimal over an evolutionary time scale in comparison to any other unlearned threshold. These considerations also reveal a simple algorithm by which the threshold could be learned

    Development of site fidelity in the nocturnal amblypygid, \u3ci\u3ePhrynus marginemaculatus\u3c/i\u3e

    Get PDF
    Amblypygids are capable of navigation in the complex terrain of rainforests in near complete darkness. Path integration is unnecessary for successful homing, and the alternative mechanisms by which they navigate have yet to be elucidated. Here, our aims were to determine whether the amblypygid Phrynus marginemaculatus could be trained to reliably return to a target shelter in a laboratory arena—indicating goal recognition—and to document changes in behavior associated with the development of fidelity. We recorded nocturnal movements and space use by individuals over five nights in an arena in which subjects were provided with two shelters that differed in quality. The target shelter, unlike the alternative shelter, shielded subjects from light in daylight hours. Individuals consistently exited and returned to a shelter each night and from the third night onward chose the target shelter more often than the alternative shelter. Indeed, on the fifth night, every subject chose the target shelter. This transition was associated with changes in movement and space use in the arena. Notably, the movement features of outbound and inbound paths differed but did not change across nights. Individuals were also characterized by distinct behavioral strategies reflecting candidate homing mechanisms

    Multisensory integration supports configural learning of a home refuge in the whip spider \u3ci\u3ePhrynus marginemaculatus\u3c/i\u3e

    Get PDF
    Predator diets represent a potential interaction between local prey availability, prey antipredator defenses, and predator foraging behavior. Female spider-specialist muddauber wasps (Hymenoptera: Sphecidae) collect spiders and provision them intact, but paralyzed, to their developing larvae, providing a unique means of quantifying the diversity and abundance of prey that they capture. Mud-dauber wasps are hypothesized to be a major source of selection on antipredator defenses in web-building spiders, and the spiny and thickened abdomens of female spiny orb-weaving spiders (Araneae: Araneidae) are hypothesized to function as antiwasp defenses. We inventoried spider prey from nests of the mud-dauber wasps Sceliphron caementarium (Drury) and Chalybion californicum (Saussure), and surveyed for spider fauna in areas surrounding nest collection sites, to specifically investigate if the spiny orb-weaver Micrathena gracilis (Walckenaer) was collected as prey by these wasps. We collected nests from six sites in southeastern Nebraska from two regions that we classify based on habitat—a forest corridor and agricultural land. We collected 761 intact spider prey from 87 nests and identified them to the family level. None of these spiders were M. gracilis. Micrathena gracilis were rare in faunal surveys on agricultural land and, surprisingly, absent in forest corridor surveys. Mud-dauber wasps were more common; we collected more spiders on agricultural land than in the forest corridor. We propose that in agricultural landscapes, the lack of certain spiders in mud-dauber wasp nests is driven by habitat use differences between predators and prey rather than physical antipredator defenses

    Importance of the antenniform legs, but not vision, for homing by the neotropical whip spider \u3ci\u3eParaphrynus laevifrons\u3c/i\u3e

    Get PDF
    Amblypygids, or whip spiders, are nocturnal, predatory arthropods that display a robust ability to navigate to their home refuge. Prior field observations and displacement studies in amblypygids demonstrated an ability to home from distances as far away as 10 m. In the current study, micro-transmitters were used to take morning position fixes of individual Paraphrynus laevifrons following an experimental displacement of 10 m from their home refuge. The intention was to assess the relative importance of vision compared with sensory input acquired from the antenniform legs for navigation as well as other aspects of their spatial behavior. Displaced individuals were randomly assigned to three treatment groups: (i) control individuals; (ii) visiondeprived individuals, VD; and (iii) individuals with sensory input from the tips of their antenniform legs compromised, AD. Control and VD subjects were generally successful in returning home, and the direction of their movement on the first night following displacement was homeward oriented. By contrast, AD subjects experienced a complete loss of navigational ability, and movement on the first night indicated no hint of homeward orientation. The data strongly support the hypothesis that sensory input from the tips of the antenniform legs is necessary for successful homing in amblypygids following displacement to an unfamiliar location, and we hypothesize an essential role of olfaction for this navigational ability

    Development of site fidelity in the nocturnal amblypygid, \u3ci\u3ePhrynus marginemaculatus\u3c/i\u3e

    Get PDF
    Amblypygids are capable of navigation in the complex terrain of rainforests in near complete darkness. Path integration is unnecessary for successful homing, and the alternative mechanisms by which they navigate have yet to be elucidated. Here, our aims were to determine whether the amblypygid Phrynus marginemaculatus could be trained to reliably return to a target shelter in a laboratory arena—indicating goal recognition—and to document changes in behavior associated with the development of fidelity. We recorded nocturnal movements and space use by individuals over five nights in an arena in which subjects were provided with two shelters that differed in quality. The target shelter, unlike the alternative shelter, shielded subjects from light in daylight hours. Individuals consistently exited and returned to a shelter each night and from the third night onward chose the target shelter more often than the alternative shelter. Indeed, on the fifth night, every subject chose the target shelter. This transition was associated with changes in movement and space use in the arena. Notably, the movement features of outbound and inbound paths differed but did not change across nights. Individuals were also characterized by distinct behavioral strategies reflecting candidate homing mechanisms

    Vertical‑Surface Navigation in the Neotropical Whip Spider \u3ci\u3eParaphrynus laevifrons\u3c/i\u3e (Arachnida: Amblypygi)

    Get PDF
    Studies on whip spider navigation have focused on their ability to locate goal locations in the horizontal plane (e.g., when moving along the ground). However, many species of tropical whip spiders reside and move along surfaces in the vertical plane (e.g., trees). Under controlled laboratory conditions, the current study investigated the ability of the tropical whip spider, Paraphrynus laevifrons, to return to a home shelter on a vertical surface in the presence of numerous, similar, and competing refuge sites, as well as the distribution of navigational errors in the vertical, horizontal, and diagonal plane. We also assessed the relative importance of sensory cues originating from a previously occupied home shelter compared to the position of a previously occupied shelter in guiding shelter choice. It was found that P. laevifrons displays robust fidelity in relocating a home shelter on a vertical surface. When navigational errors did occur, they were not significantly different in all three directions. Additionally, cue-conflict test trials revealed that cues associated with an original home shelter, likely self-deposited chemical signals, were more important than sources of positional information in guiding the shelter choice of P. laevifrons

    Exploring Higher-Order Conceptual Learning in an Arthropod with a Large Multisensory Processing Center

    Get PDF
    Comparative cognition aims to understand the evolutionary history and current function of cognitive abilities in a variety of species with diverse natural histories. One characteristic often attributed to higher cognitive abilities is higher-order conceptual learning, such as the ability to learn concepts independent of stimuli—e.g., ‘same’ or ‘different’. Conceptual learning has been documented in honeybees and a number of vertebrates. Amblypygids, nocturnal enigmatic arachnids, are good candidates for higher-order learning because they are excellent associational learners, exceptional navigators, and they have large, highly folded mushroom bodies, which are brain regions known to be involved in learning and memory in insects. In Experiment 1, we investigate if the amblypygid Phrynus marginimaculatus can learn the concept of same with a delayed odor matching task. In Experiment 2, we test if Paraphrynus laevifrons can learn same/different with delayed tactile matching and nonmatching tasks before testing if they can transfer this learning to a novel crossmodal odor stimulus. Our data provide no evidence of conceptual learning in amblypygids, but more solid conclusions will require the use of alternative experimental designs to ensure our negative results are not simply a consequence of the designs we employed

    Loci Encoding Compounds Potentially Active Against Drug-Resistant Pathogens amidst a Decreasing Pool of Novel Antibiotics

    Get PDF
    Since the discovery of penicillin, microbes have been a source of antibiotics that inhibit the growth of pathogens. However, with the evolution of multidrug-resistant (MDR) strains, it remains unclear if there is an abundant or limited supply of natural products to be discovered that are effective against MDR isolates. To identify strains that are antagonistic to pathogens, we examined a set of 471 globally derived environmental strains (env-Ps) for activity against a panel of 65 pathogens including spp., spp., , and spp. isolated from the lungs of cystic fibrosis (CF) patients. From more than 30,000 competitive interactions, 1,530 individual inhibitory events were observed. While strains from water habitats were not proportionate in antagonistic activity, MDR CF-derived pathogens (CF-Ps) were less susceptible to inhibition by env-Ps, suggesting that fewer natural products are effective against MDR strains. These results advocate for a directed strategy to identify unique drugs. To facilitate discovery of antibiotics against the most resistant pathogens, we developed a workflow in which phylogenetic and antagonistic data were merged to identify strains that inhibit MDR CF-Ps and subjected those env-Ps to transposon mutagenesis. Six different biosynthetic gene clusters (BGCs) were identified from four strains whose products inhibited pathogens including carbapenem-resistant BGCs were rare in databases, suggesting the production of novel antibiotics. This strategy can be utilized to facilitate the discovery of needed antibiotics that are potentially active against the most drug-resistant pathogens. Carbapenem-resistant is difficult to treat and has been deemed by the World Health Organization as a priority one pathogen for which antibiotics are most urgently needed. Although metagenomics and bioinformatic studies suggest that natural bacteria remain a source of novel compounds, the identification of genes and their products specific to activity against MDR pathogens remains problematic. Here, we examine water-derived pseudomonads and identify gene clusters whose compounds inhibit CF-derived MDR pathogens, including carbapenem-resistant

    Visual control of refuge recognition in the whip spider \u3ci\u3ePhrynus marginemaculatus\u3c/i\u3e

    Get PDF
    Amblypygids, or whip spiders, are nocturnally active arachnids which live in structurally complex environments. Whip spiders are excellent navigators that can re-locate a home refuge without relying on visual input. Therefore, an open question is whether visual input can control any aspect of whip spider spatial behavior. In the current study, Phrynus marginemaculatus were trained to locate an escape refuge by discriminating between differently oriented black and white stripes placed either on the walls of a testing arena (frontal discrimination) or on the ceiling of the same testing arena (overhead discrimination). Regardless of the placement of the visual stimuli, the whip spiders were successful in learning the location of the escape refuge. In a follow-up study of the overhead discrimination, occluding the median eyes was found to disrupt the ability of the whip spiders to locate the shelter. The data support the conclusion that whip spiders can rely on vision to learn and recognize an escape shelter. We suggest that visual inputs to the brain’s mushroom bodies enable this ability

    Environmental pseudomonads inhibit cystic fibrosis patient-derived Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is an opportunistic pathogen which is evolving resistance to many currently used antibiotics. While much research has been devoted to the roles of pathogenic P. aeruginosa in cystic fibrosis (CF) patients, less is known of its ecological properties. P. aeruginosa dominates the lungs during chronic infection in CF patients, yet its abundance in some environments is less than that of other diverse groups of pseudomonads. Here, we sought to determine if clinical isolates of P. aeruginosa are vulnerable to environmental pseudomonads that dominate soil and water habitats in one-to-one competitions which may provide a source of inhibitory factors. We isolated a total of 330 pseudomonads from diverse habitats of soil and freshwater ecosystems and competed these strains against one another to determine their capacity for antagonistic activity. Over 900 individual inhibitory events were observed. Extending the analysis to P. aeruginosa isolates revealed that clinical isolates, including ones with increased alginate production, were susceptible to competition by multiple environmental strains. We performed transposon mutagenesis on one isolate and identified an ~14.8-kb locus involved in antagonistic activity. Only two other environmental isolates were observed to carry the locus, suggesting the presence of additional unique compounds or interactions among other isolates involved in outcompeting P. aeruginosa. This collection of strains represents a source of compounds that are active against multiple pathogenic strains. With the evolution of resistance of P. aeruginosa to currently used antibiotics, these environmental strains provide opportunities for novel compound discovery against drug-resistant clinical strains
    • …
    corecore