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The sequential search strategy is a prominent model of searcher behavior, derived as a rule by which females
might sample and choose a mate from a distribution of prospective partners. The strategy involves a threshold
criterion against which prospectivemates are evaluated. The optimal threshold depends on the attributes of pro-
spective mates, which are likely to vary across generations or within the lifetime of searchers due to stochastic
environmental events. The extent of this variability and the cost to acquire information on the distribution of
the quality of prospective mates determine whether a learned or environmentally canalized threshold is likely
to be favored. In this paper, we determine conditions on cross-generational perturbations of the distribution of
male phenotypes that allow for the evolutionary stability of an environmentally canalized threshold. In particu-
lar, we derive conditions under which there is a genetically determined threshold that is optimal over an evolu-
tionary time scale in comparison to any other unlearned threshold. These considerations also reveal a simple
algorithm by which the threshold could be learned.

© 2014 Cheng et. al. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The environment changes continually and, on an evolutionary time
scale, these changes can impose selection pressures that alter the
optimal expression of phenotypes or behavior. Behavioral plasticity,
the ability of an animal to alter its behavior in response to changes of
environmental conditions, is expected if the environment shifts appre-
ciably across generations or within the lifetime of an individual, where-
as costs incurred to learn appropriate responses to environmental
stimuli may favor less pliable, environmentally canalized behavior
when the environment is relatively static [reviewed by 1–5]. In this
paper, we address issues related to how environmental stochasticity
influences the control of female mate choice decisions in the context
of a prominent model of searcher behavior.

The sequential search strategy, the model that we use to address
this issue, has an extensive history in the field of economics [reviewed
by 6,7]. Janetos [8] and Real [9] introduced this strategy as a potential
rule by which females might sample and choose among prospective
mates and numerous empirical and theoretical papers related to their

ideas followed [reviewed by 10]. The solution of themodel is a fixed, op-
timal threshold criterion against which the quality of prospective mates
is compared. The threshold is invariant in the original formulations of
the model because females were presumed to sample males from a
known, static distribution of prospective mates that either does not
change across generations or is somehow learned perfectly by searchers
each generation [11]. This assumption is clearly unrealistic and the im-
pact of uncertainty about this distribution on mate choice decisions has
been explored in a variety of contexts [11–19]. For instance, Hutchinson
andHalupka [16] explored theperformance of threshold-based decision
rules whenmales are distributed in patches that differ in their composi-
tion of prospective mates and Collins et al. [11] compared the perfor-
mance of fixed and learned thresholds under conditions in which the
distribution ofmales fromwhich females choose varies spatially or tem-
porally across generations.

In this paper, we are concerned with the stability of an environmen-
tally canalized, genetically determined threshold when environmental
stochasticity causes perturbations of the distribution of prospective
mates across generations of searchers. The existence of an evolutionary
stablefixed thresholdwas tacitly assumed in various comparisonsmade
by Collins et al. [11] and here we establish general conditions under
which this assumption is justified. These considerations reveal, in addi-
tion, a simple algorithm by which the threshold could be learned.
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2. The model

In this section of the paper, we provide a brief description of the
search process and the assumptions used to derive the solution to
the sequential search strategy, where the quality of a prospective
mate—the to-be-realized fitness gain to a searcher—is revealed by in-
spection of a phenotypic indicator character [reviewed by 20,21]. The
model can be applied when either sex is considered to be the search-
er, but for simplicity we suppose that this role is played by females.
Wiegmann et al. [22] formulate the model in detail [see also 23].

Females pay an expected cost c N 0 to sample a prospectivemate and
inspect his expression of a phenotypic indicator character X, where X is
bounded on the interval [0, ∞). The cumulative distribution of X is F,
which is presumed, for now, to be known by searchers. Prospective
mates are sampled randomly and sequentially from F. The time horizon
over which females search is unlimited and males are assumed to mate
indiscriminately. Hence, the number P of prospective mates that can be
sampled by a female is unrestricted and the phenotypes of males in any
encounter sequence {X1, X2,…, XP} are independent and identically
distributed.

The acceptability of an encountered male is determined by a com-
parison of his expression of X to a threshold criterion T. The indicator
character of a sampled male is related to the to-be-realized fitness
gain to a searcher by a function u, which is presumed to have a finite
mean and to be continuously differentiable with respect to X. (For sim-
plicity, u(0) ≥ 0 and du(x)/dx= u′(x)≥ 0 are also assumed.) A female
who adopts a particular threshold criterion t terminates search and
mates with the first prospective mate in a sequence of encounters
whose phenotype is X ≥ t. This male is invariably the last prospective
mate encountered in the sequence {X1, X2,…, XP} because when the
time horizon for search is unrestricted the threshold is fixed and an un-
acceptable, previously encountered male is never later accepted.

The quality of an acceptedmale is u(XP) and the cost paid to sample P
males is cP, where both the quality of a matedmale u(XP) and the cost to
sample a prospectivemate c aremeasured in units offitness to a searcher.
Hence, the net fitness return to a searcher is u(XP)− cP. The expected net
fitness return v to a searcher who employs the threshold t is

v tð Þ ¼

Z ∞

t
u xð ÞdF xð Þ
1−F tð Þ −c

1
1−F tð Þ

� �
: ð1Þ

Thefirst termon the right-hand side is the expected quality of amale
whose expression of X equals or exceed t and the second term is the cost
to sample a prospective mate multiplied by 1/(1 − F(t)), the number
of males that a female expects to sample to find an acceptable mate
when the threshold t is used as the criterion against which males are
evaluated.

The optimal threshold criterion t* satisfies

u t�
� � ¼ v t�

� �
: ð2Þ

In other words, the optimal phenotypic threshold is the X that causes a
searcher to be indifferent between the acceptance of an encountered in-
dividual, which would yield a net fitness gain u if she mated, and the
prospect of continued search, which would yield an expected net
return v [7,9]. Substitution of u(t*) for v(t) into (1), rearrangement
and integration by parts leads to an expression of the solution that we
will use throughout this paper, namely

c ¼
Z ∞

t�
u0 xð Þ 1−F xð Þ½ �dx ð3Þ

[18,22]. The last important model property relates to the conditions
underwhich a femalewill sample prospectivemates. A femalewill search
for amate provided that c is less than themeanmale quality μbecause she

otherwise has no incentive to engage in the search process. In particular,
her expected net gain if she engages in search is negative whenever c N μ.

The cumulative distribution of themale indicator character X, name-
ly F, is more realistically expected to fluctuate from generation to gener-
ation and in the next section of the paper we establish sufficient
conditions for the evolutionary stability of a genetically determined t*
to perturbations of F.

3. Evolutionary stability of a genetically fixed threshold

The optimal threshold t* is a function of the distribution F. If t* is con-
tinuous with respect to F, then under some conditions, which we will es-
tablish, it is stable to generational perturbations of F. In particular,we shall
establish conditions onperturbations of F across generations that allowan
unlearned, genetically determined t* to be optimal over an evolutionary
time scale in comparison to any other genetically determined threshold.

Imagine a sequence of distributions {Fn} = {F1, F2, F3,…} of X on the
interval [0, ∞) for which u has finite mean μn N c, where {Fn} is an evo-
lutionary sequence of distributions, experienced over a sequence of n
generations of searchers, that converges, as will be specified, on F. For
each Fn there is an optimal threshold criterion tn*. If these threshold
criteria converge on the optimal threshold t* under F, then t* is optimal
over the evolutionary sequence {Fn}. Thus, our objective is to establish
conditions on {Fn} which imply that tn* converges on t*.

Theorem1. If Fn converges to F uniformly on the interval [0,∞) of X and u
is bounded on [0, ∞), then tn* converges to t*.

Proof. It cannot be true that {tn*} is unbounded. Imagine that the sub-
sequence tni�

� �
of {tn*} tends toward infinity. Then

c ¼
Z ∞

t�ni

u0 xð Þ 1−Fni
xð Þ

h i
dx ¼

Z ∞

t�ni

u0 xð Þ 1−F xð Þ þ F xð Þ−Fni
xð Þ

h i
dx

¼
Z ∞

t�ni

u0 xð Þ 1−F xð Þ½ �dxþ
Z ∞

t�ni

u0 xð Þ F xð Þ−Fni
xð Þ

h i
dx

≤
Z ∞

t�ni

u0 xð Þ 1−F xð Þ½ �dxþ
Z ∞

t�ni

u0 xð Þ F xð Þ−Fni
xð Þ

��� ���dx
≤
Z ∞

t�ni

u0 xð Þ 1−F xð Þ½ �dxþ supu xð Þ � sup F xð Þ−Fni
xð Þ

��� ���:

ð4Þ

The first term on the right-hand side approaches zero as i increases to in-
finity because u has a finitemeanwith respect to F. The second term con-
verges to zero because Fni converges uniformly to F. This contradicts the
assumption that c N 0. The sequence {tn*}must consequently be bounded.

The Bolzano–Weierstrass Theorem then assures us that {tn*} con-
verges to some number [24]. Suppose that {tn*} converges to the limit
S, where S ≤ t*. Then for i sufficiently large

0 ¼ c−c

¼
Z ∞

t�ni

u0 xð Þ 1−Fni
xð Þ

h i
dx−

Z ∞

t�
u0 xð Þ 1−F xð Þ½ �dx

¼
Z t�

t�ni

u0 xð Þ 1−Fni
xð Þ

h i
dxþ

Z ∞

t�
u0 xð Þ 1−Fni

xð Þ
h i

dx−
Z ∞

t�
u0 xð Þ 1−F xð Þ½ �dx

¼
Z t�

t�ni

u0 xð Þ 1−Fni
xð Þ

h i
dxþ

Z ∞

t�
u0 xð Þ F xð Þ−Fni

xð Þ
h i

dx: ð5Þ

The second integral converges to zero as i increases to infinity. The
Dominated Convergence Theorem applies to the first integral, with
the integrable dominating function u(t) [25]. The conclusion is that

0 ¼
Z t�

S
u0 xð Þ 1−F xð Þ½ �dx: ð6Þ

Because u strictly increases with X and F(t*−) b 1, this can happen only
if S = t*. An analogous argument yields the same conclusion for the
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situation in which S ≥ t*, which proves that every convergent subse-
quence tni�

� �
converges to t*.

The boundedness condition on u can be relaxed, as we now show, if
a more stringent convergence condition is imposed on {Fn}.

Theorem 2. If Fn converges to F in the sense of L1(u′(t)dt, [0,∞)), then tn*
converges to t*.

Proof. The proof is similar to the proof of Theorem 1. If there is a subse-
quence tni�

� �
that tends toward infinity, then

c ¼
Z ∞

t�ni

u0 xð Þ 1−Fni
xð Þ

h i
dx

¼
Z ∞

t�ni

u0 xð Þ 1−F xð Þ½ �dxþ
Z ∞

t�ni

u0 xð Þ F xð Þ−Fni
xð Þ

h i
dx

≤
Z ∞

t�ni

u0 xð Þ 1−F xð Þ½ �dxþ F xð Þ−Fni
xð Þ

			 			
1
:

ð7Þ

The final expression on the right-hand side approaches zero as i in-
creases,which contradicts the assumption that c N 0. Thus, the sequence
{tn*} is bounded.

Now suppose that the bound on {tn*} is S, where S ≤ t*. Then for i
sufficiently large

0 ¼
Z t�

t�ni

u0 xð Þ 1−Fni
xð Þ

h i
dxþ

Z ∞

t�ni

u0 xð Þ F xð Þ−Fni
xð Þ

h i
dx: ð8Þ

The second integral converges to zero as i increases to infinity. The first
integral can be zero only if S = t*. A similar argument yields the same
conclusion for the situation inwhich S≥ t*, which proves that {tn*} con-
verges to t*.

Another trade-off takes us to the next sufficient condition for the
convergence of thresholds. Let the mean quality of males associated
with distribution Fn be μn = ∫0

∞u(x)dFn(x). The convergence of means,
togetherwith amuchweakermode of convergence in {Fn}, then suffices
for {tn*} to converge to t*.

Theorem 3. If Fn converges to F pointwise, and μn converges to μ, then tn*
converges to t*.

Proof. The proof is again structurally similar to that used in Theorem 1.
If there is a subsequence {tn*} that tends toward infinity, then

c ¼
Z ∞

t�ni

u0 xð Þ 1−Fni
xð Þ


 �
dx

¼
Z ∞

t�ni

u0 xð Þ 1−F xð Þð Þdxþ
Z ∞

t�ni

u0 xð Þ F xð Þ−Fni
xð Þ

h i
dx

≤
Z ∞

t�ni

u0 xð Þ 1−F xð Þð Þdxþ μni
−μ

��� ���:
ð9Þ

The final expression on the right-hand side approaches zero as i in-
creases,which contradicts the assumption that c N 0. Thus, the sequence
{tn*} is bounded.

Now suppose again that {tn*} is a convergent sequence with limit S,
where S ≤ t*. Then for i sufficiently large

0 ¼
Z t�

t�ni

u0 xð Þ 1−Fni
xð Þ

h i
dxþ

Z ∞

t�ni

u0 xð Þ F xð Þ−Fni
xð Þ

h i
dx: ð10Þ

The second integral is bounded by |μn− μ|, which converges to zero as i
increases to infinity. This forces the first integral to zero, which can hap-
pen only if S = t*. An analogous argument yields the same conclusion
for the situation in which S ≥ t*. The conclusion is again that {tn*} con-
verges to t*.

Theorem 4. If ∫Au(x)dFn(x) converges to ∫Au(x)dF(x) for every measur-
able subset A of [0, ∞), then tn* converges to t*.

Proof. This proof follows the proof thatwe used to establish Theorem1.
The Generalized Dominated Convergence Theorem is applied to the se-
quence of measures u(x)dFn(x) (or, from integration by parts, the mea-
sures u′(x)[1 − Fn(x)]dx) and the sequence of indicator functions for
the sets [tn*, ∞). The latter are dominated by the unit constant function
and the argument proceeds as in Theorem 1.

Finally, it is straightforward to illustrate why t* is optimal over an
evolutionary time scale in comparison to any other environmentally
canalized, genetically determined threshold whenever conditions on F
are sufficient for tn* to converge to t*.

Corollary 1. If tn* converges to t*, then v(tn*) converges to v(t*).

Proof. This statement follows directly from the fact that u is continuous
(and independent of F) and the fact that v(t(⋅)⁎)=u(t(⋅)⁎). Hence, the ex-
pected net fitness return associatedwith t*, namely v(t*), is higher than
the expected return associated with any other determined threshold
and t* is evolutionarily stable against perturbations {Fn} that converge,
as we characterized, on F.

4. Learned thresholds

Thus far we have imagined that the threshold criterion is environ-
mentally canalized and our concern was with the evolutionary stability
of t*. Now we present a continuity result that applies specifically to sit-
uations inwhich a threshold is learned by searchers within a generation
through their experiences with a single distribution F that has an asso-
ciated optimal threshold criterion t*. The result that follows provides a
sufficient condition—and a simple algorithm—for a searcher with no
prior knowledge of F to learn a threshold that converges on t*.

Imagine that a female observes a sequence of male phenotypes {Xn}
before search is initiated,where eachXi is an independent and identical-
ly distributed sample from F. Define the sequence of empirical distribu-
tion functions {Fn} constructed from the realized sequence of
encounters {Xn} as

Fn xð Þ ¼ 1
n

Xn
i¼1

I Xi ;∞½ Þ xð Þ; ð11Þ

where

I Xi ;∞½ Þ xð Þ ¼ 1; if Xi N x
0; otherwise

�
ð12Þ

is the indicator function of [Xi, ∞). Notice that each Fn is itself a random
variable.

Theorem 5. If {Fn} is the sequence of empirical distributions, then tn*
converges to t* with probability 1.

Proof. The Glivenko–Cantelli Theorem ensures that {Fn} converges uni-
formly with a probability of 1 to F [26]. Let Yn be the random variable
u(Xn) for every n. The Law of Large Numbers provides that

Y1 þ Y2 þ Kþ Yn

n
→ E Yð Þ ð13Þ

with probability 1 as n approaches infinity. This is equivalent to the
statement that
Z ∞

0
u xð ÞdFn xð Þ→

Z ∞

0
u xð ÞdF xð Þ ð14Þ

as n approaches infinity. The assertion now follows by application of
Theorem 3.
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5. Discussion

The optimal threshold under a sequential search strategy is expected
to vary across generations of searchers when environmental conditions
perturb the distribution of male quality [11,16]. In this paper, we
established conditions on perturbations of this distribution that permit
the evolutionary stability of an environmentally canalized phenotypic
threshold. In our formulation of the problem we supposed that each
generation of searchers experiences a somewhat different distribution
of prospective mates. In practice, the evolutionary time scale over
which our results can be applied will depend on the magnitude of
environmental perturbations across generations, where the pertur-
bations are non-catastrophic and, over an evolutionary time scale,
non-directional. The convergence conditions that allow for an optimal
fixed threshold should be simple to establish in a typical evolutionary
simulation that involves hundreds or thousands of generations. The
convergence conditions that we derived effectively specify when envi-
ronmentally induced perturbations of the distribution of male quality
permit a particular environmentally canalized phenotypic threshold to
outcompete all alternative genetically determined thresholds.

How uncertainty about the distribution from which males are sam-
pled influences mate choice decisions has been explored in a variety
of other contexts [11–19]. The sequential search strategy has been com-
pared, for instance, with other search strategies under conditions in
whichmales are distributed in patches and there is inter-patch variabil-
ity in the quality of prospective mates [11,16]. The expected net fitness
return to searchers that apply a fixed threshold is, not surprisingly, re-
duced when search is confined to a single patch and the mean quality
of males varies considerably among patches. The results derived from
this scenario might similarly apply to conditions in which the mean
quality of prospective mates varies across generations of searchers if
we construe patches as generations. The evolutionary dynamics of envi-
ronmentally canalized thresholds in patchy environments should, how-
ever, differ to some extent from cross-generational dynamics because
when variability occurs across generations all searchers in a particular
generation experience the same distribution of prospective mates [11].

Collins et al. [11] developed a genetic algorithmto compare theperfor-
mance of a learned threshold to afixed threshold,where themeanquality
of prospectivemates varies spatially or temporally across an evolutionary
time scale of many thousands of generations. They found that a learned
threshold is most advantageous when there is high variability of the
mean quality ofmales among patches or generations and that the relative
performance of learned and fixed thresholds depends on the variability of
male quality within patches or generations. The existence of an optimal,
genetically determined threshold was tacitly assumed in some of their
comparisons of learned andfixed thresholds. In this paper,we established
conditions under which this assumption is justified, conditions on the
distribution of male quality that permit the evolutionary stability of a
genetically determined phenotypic threshold. Importantly, the results
thatwe established do not depend on any particular parametric restric-
tions on the male indicator character, like normality, or simple shifts of
the mean male phenotype across generations.

Learned acceptance thresholds generally yield a higher expected fit-
ness return than environmentally canalized thresholds when searchers
experience high uncertainty about the quality of prospective mates and
the cost to gather and process information on the distribution of male
quality is small. Bayesian rules, like the one applied by Collins et al.
[11], are often used to model the dynamics of a learned threshold,
where searchers are presumed to have someprior knowledge of thedis-
tribution of male quality [13,14,27,28; but see 15]. The convergence

conditions that we established for the persistence of an environmental-
ly canalized phenotypic threshold revealed a simple algorithmbywhich
a searcher with no prior knowledge of the distribution could, in princi-
ple, learn a threshold that converges on the optimal threshold.

The functional relation between the male indicator character and
male quality was assumed to be invariant under the conditions that
we established for the evolutionary persistence of an optimal, genetically
determined phenotypic threshold. This relationship can, however, also
shift across generations as a consequence of environmental stochasticity.
The approach we used could be similarly applied to establish conditions
on the evolutionary stability of an optimal fixed threshold when the fit-
ness function is likewise perturbed.
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