211 research outputs found

    Isomonodromic deformations of connections with singularities of parahoric formal type

    Full text link
    In previous work, the authors have developed a geometric theory of fundamental strata to study connections on the projective line with irregular singularities of parahoric formal type. In this paper, the moduli space of connections that contain regular fundamental strata with fixed combinatorics at each singular point is constructed as a smooth Poisson reduction. The authors then explicitly compute the isomonodromy equations as an integrable system. This result generalizes work of Jimbo, Miwa, and Ueno to connections whose singularities have parahoric formal type.Comment: 32 pages. One of the main theorems (Theorem 5.1) has been significantly strengthened. It now states that the isomonodromy equations give rise to an integrable system on the moduli space of framed connections with fixed combinatorics instead of only on a principal GL_n bundle over this space. Sections 5 and 6 have been substantially rewritte

    The impacts of warming and hypoxia on the performance of an obligate ram ventilator

    Get PDF
    Climate change is causing the warming and deoxygenation of coastal habitats like Chesapeake Bay that serve as important nursery habitats for many marine fish species. As conditions continue to change, it is important to understand how these changes impact individual species\u27 behavioral and metabolic performance. The sandbar shark (Carcharhinus plumbeus) is an obligate ram-ventilating apex predator whose juveniles use Chesapeake Bay as a nursery ground up to 10 years of age. The objective of this study was to measure juvenile sandbar shark metabolic and behavioral performance as a proxy for overall performance (i.e. fitness or success) when exposed to warm and hypoxic water. Juvenile sandbar sharks (79.5-113.5 cm total length) were collected from an estuary along the eastern shore of Virginia and returned to lab where they were fitted with an accelerometer, placed in a respirometer and exposed to varying temperatures and oxygen levels. Juvenile sandbar shark overall performance declined substantially at 32 degrees C or when dissolved oxygen concentration was reduced below 3.5 mg l(-1) (51% oxygen saturation between 24-32 degrees C). As the extent of warm hypoxic water increases in Chesapeake Bay, we expect that the available sandbar shark nursery habitat will be reduced, which may negatively impact the population of sandbar sharks in the western Atlantic as well as the overall health of the ecosystem within Chesapeake Bay

    Combined Effects of Acute Temperature Change and Elevated pCO2 on the Metabolic Rates and Hypoxia Tolerances of Clearnose Skate (Rostaraja eglanteria), Summer Flounder (Paralichthys dentatus), and Thorny Skate (Amblyraja radiata)

    Get PDF
    Understanding how rising temperatures, ocean acidification, and hypoxia affect the performance of coastal fishes is essential to predicting species-specific responses to climate change. Although a population’s habitat influences physiological performance, little work has explicitly examined the multi-stressor responses of species from habitats differing in natural variability. Here, clearnose skate (Rostaraja eglanteria) and summer flounder (Paralichthys dentatus) from mid-Atlantic estuaries, and thorny skate (Amblyraja radiata) from the Gulf of Maine, were acutely exposed to current and projected temperatures (20, 24, or 28 °C; 22 or 30 °C; and 9, 13, or 15 °C, respectively) and acidification conditions (pH 7.8 or 7.4). We tested metabolic rates and hypoxia tolerance using intermittent-flow respirometry. All three species exhibited increases in standard metabolic rate under an 8 °C temperature increase (Q10 of 1.71, 1.07, and 2.56, respectively), although this was most pronounced in the thorny skate. At the lowest test temperature and under the low pH treatment, all three species exhibited significant increases in standard metabolic rate (44–105%; p \u3c 0.05) and decreases in hypoxia tolerance (60–84% increases in critical oxygen pressure; p \u3c 0.05). This study demonstrates the interactive effects of increasing temperature and changing ocean carbonate chemistry are species-specific, the implications of which should be considered within the context of habitat. Associated dataset: Gail D. Schweiterman, Daniel P. Crear et al. 2019. Metabolic Rates and Hypoxia Tolerences of clearnose skate (Rostaraja eglanteria), summer flounder (Paralichthys dentatus), and thorny skate (Amblyraja radiata) https://doi.org/10.25773/qmew-c18

    Metabolic Rates and Hypoxia Tolerences of clearnose skate (Rostaraja eglanteria), summer flounder (Paralichthys dentatus), and thorny skate (Amblyraja radiata)

    Get PDF
    These data were collected following methods described in the associated publication: LINK “Combined Effects of Acute Temperature Change and Elevated pCO2 on the Metabolic Rates and Hypoxia Tolerances of Clearnose Skate (Rostaraja eglanteria), Summer Flounder (Paralichthys dentatus), and Thorny Skate (Amblyraja radiata)”. Schweiterman, G.D. et al. 2019 Biology, 8(3), 56

    Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning

    Get PDF
    The renal stroma is an embryonic cell population located in the cortex that provides a structural framework as well as a source of endothelial progenitors for the developing kidney. The exact role of the renal stroma in normal kidney development hasn't been clearly defined. However, previous studies have shown that the genetic deletion of Foxd1, a renal stroma specific gene, leads to severe kidney malformations confirming the importance of stroma in normal kidney development. This study further investigates the role of renal stroma by ablating Foxd1-derived stroma cells themselves and observing the response of the remaining cell populations. A Foxd1cre (renal stroma specific) mouse was crossed with a diphtheria toxin mouse (DTA) to specifically induce apoptosis in stromal cells. Histological examination of kidneys at embryonic day 13.5-18.5 showed a lack of stromal tissue, mispatterning of renal structures, and dysplastic and/or fused horseshoe kidneys. Immunofluorescence staining of nephron progenitors, vasculature, ureteric epithelium, differentiated nephron progenitors, and vascular supportive cells revealed that mutants had thickened nephron progenitor caps, cortical regions devoid of nephron progenitors, aberrant vessel patterning and thickening, ureteric branching defects and migration of differentiated nephron structures into the medulla. The similarities between the renal deformities caused by Foxd1 genetic knockout and Foxd1DTA mouse models reveal the importance of Foxd1 in mediating and maintaining the functional integrity of the renal stroma. © 2014 Hum et al

    Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits

    Full text link
    Scalable quantum computing can become a reality with error correction, provided coherent qubits can be constructed in large arrays. The key premise is that physical errors can remain both small and sufficiently uncorrelated as devices scale, so that logical error rates can be exponentially suppressed. However, energetic impacts from cosmic rays and latent radioactivity violate both of these assumptions. An impinging particle ionizes the substrate, radiating high energy phonons that induce a burst of quasiparticles, destroying qubit coherence throughout the device. High-energy radiation has been identified as a source of error in pilot superconducting quantum devices, but lacking a measurement technique able to resolve a single event in detail, the effect on large scale algorithms and error correction in particular remains an open question. Elucidating the physics involved requires operating large numbers of qubits at the same rapid timescales as in error correction, exposing the event's evolution in time and spread in space. Here, we directly observe high-energy rays impacting a large-scale quantum processor. We introduce a rapid space and time-multiplexed measurement method and identify large bursts of quasiparticles that simultaneously and severely limit the energy coherence of all qubits, causing chip-wide failure. We track the events from their initial localised impact to high error rates across the chip. Our results provide direct insights into the scale and dynamics of these damaging error bursts in large-scale devices, and highlight the necessity of mitigation to enable quantum computing to scale
    corecore