86 research outputs found

    The spectral density of the scattering matrix of the magnetic Schrodinger operator for high energies

    Full text link
    The scattering matrix of the Schrodinger operator with smooth short-range electric and magnetic potentials is considered. The asymptotic density of the eigenvalues of this scattering matrix in the high energy regime is determined. An explicit formula for this density is given. This formula involves only the magnetic vector-potential.Comment: 14 page

    The spectral density of the scattering matrix for high energies

    Full text link
    We determine the density of eigenvalues of the scattering matrix of the Schrodinger operator with a short range potential in the high energy asymptotic regime. We give an explicit formula for this density in terms of the X-ray transform of the potential.Comment: 11 pages, Latex 2

    Open Notebook Science Challenge: Solubilities of Organic Compounds in Organic Solvents

    Get PDF
    This book contains the results of the Open Notebook Science Solubility Challenge. All experimental measurements are provided with a link to either the laboratory notebook page where the experiment was carried out or to a literature reference. The Challenge was sponsored by Submeta, Nature and Sigma-Aldrich

    Open Notebook Science Challenge: Solubilities of Organic Compounds in Organic Solvents

    Get PDF
    This book contains the results of the Open Notebook Science Solubility Challenge. All experimental measurements are provided with a link to either the laboratory notebook page where the experiment was carried out or to a literature reference. The Challenge was sponsored by Submeta, Nature and Sigma-Aldrich

    The VAST Survey - I. Companions and the unexpected X-ray detection of B6-A7 stars

    Full text link
    With an adaptive optics imaging survey of 148 B6-A7 stars, we have tested the hypothesis that unresolved lower-mass companions are the source of the unexpected X-ray detections of stars in this spectral type range. The sample is composed of 63 stars detected in X-rays within the ROSAT All-Sky Survey and 85 stars that form a control sample; both subsets have the same restricted distribution of spectral type, age, X-ray sensitivity and separation coverage. A total of 68 companion candidates are resolved with separations ranging from 0.3" to 26.2", with 23 new detections. The multiple star frequency of the X-ray sample based on companions resolved within the ROSAT error ellipse is found to be 43 (+6,-6)%. The corresponding control sample multiple star frequency is three times lower at 12 (+4,-3)% -- a difference of 31\pm7%. These results are presented in the first of a series of papers based on our Volume-limited A-Star (VAST) survey -- a comprehensive study of the multiplicity of A-type stars.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Truncation of Pik3r1 causes severe insulin resistance uncoupled from obesity and dyslipidaemia by increased energy expenditure.

    Get PDF
    OBJECTIVE: Insulin signalling via phosphoinositide 3-kinase (PI3K) requires PIK3R1-encoded regulatory subunits. C-terminal PIK3R1 mutations cause SHORT syndrome, as well as lipodystrophy and insulin resistance (IR), surprisingly without fatty liver or metabolic dyslipidaemia. We sought to investigate this discordance. METHODS: The human pathogenic Pik3r1 Y657∗ mutation was knocked into mice by homologous recombination. Growth, body composition, bioenergetic and metabolic profiles were investigated on chow and high-fat diet (HFD). We examined adipose and liver histology, and assessed liver responses to fasting and refeeding transcriptomically. RESULTS: Like humans with SHORT syndrome, Pik3r1WT/Y657∗ mice were small with severe IR, and adipose expansion on HFD was markedly reduced. Also as in humans, plasma lipid concentrations were low, and insulin-stimulated hepatic lipogenesis was not increased despite hyperinsulinemia. At odds with lipodystrophy, however, no adipocyte hypertrophy nor adipose inflammation was found. Liver lipogenic gene expression was not significantly altered, and unbiased transcriptomics showed only minor changes, including evidence of reduced endoplasmic reticulum stress in the fed state and diminished Rictor-dependent transcription on fasting. Increased energy expenditure, which was not explained by hyperglycaemia nor intestinal malabsorption, provided an alternative explanation for the uncoupling of IR from dyslipidaemia. CONCLUSIONS: Pik3r1 dysfunction in mice phenocopies the IR and reduced adiposity without lipotoxicity of human SHORT syndrome. Decreased adiposity may not reflect bona fide lipodystrophy, but rather, increased energy expenditure, and we suggest that further study of brown adipose tissue in both humans and mice is warranted

    The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics From 10-100 AU

    Full text link
    We present a statistical analysis of the first 300 stars observed by the Gemini Planet Imager Exoplanet Survey (GPIES). This subsample includes six detected planets and three brown dwarfs; from these detections and our contrast curves we infer the underlying distributions of substellar companions with respect to their mass, semi-major axis, and host stellar mass. We uncover a strong correlation between planet occurrence rate and host star mass, with stars M >> 1.5 MM_\odot more likely to host planets with masses between 2-13 MJup_{\rm Jup} and semi-major axes of 3-100 au at 99.92% confidence. We fit a double power-law model in planet mass (m) and semi-major axis (a) for planet populations around high-mass stars (M >> 1.5M_\odot) of the form d2Ndmdamαaβ\frac{d^2 N}{dm da} \propto m^\alpha a^\beta, finding α\alpha = -2.4 ±\pm 0.8 and β\beta = -2.0 ±\pm 0.5, and an integrated occurrence rate of 94+59^{+5}_{-4}% between 5-13 MJup_{\rm Jup} and 10-100 au. A significantly lower occurrence rate is obtained for brown dwarfs around all stars, with 0.80.5+0.8^{+0.8}_{-0.5}% of stars hosting a brown dwarf companion between 13-80 MJup_{\rm Jup} and 10-100 au. Brown dwarfs also appear to be distributed differently in mass and semi-major axis compared to giant planets; whereas giant planets follow a bottom-heavy mass distribution and favor smaller semi-major axes, brown dwarfs exhibit just the opposite behaviors. Comparing to studies of short-period giant planets from the RV method, our results are consistent with a peak in occurrence of giant planets between ~1-10 au. We discuss how these trends, including the preference of giant planets for high-mass host stars, point to formation of giant planets by core/pebble accretion, and formation of brown dwarfs by gravitational instability.Comment: 52 pages, 18 figures. AJ in pres

    Dynamical Constraints On the HR 8799 Planets With GPI

    Get PDF
    The HR 8799 system uniquely harbors four young super-Jupiters whose orbits can provide insights into the system\u27s dynamical history and constrain the masses of the planets themselves. Using the Gemini Planet Imager, we obtained down to one milliarcsecond precision on the astrometry of these planets. We assessed four-planet orbit models with different levels of constraints and found that assuming the planets are near 1:2:4:8 period commensurabilities, or are coplanar, does not worsen the fit. We added the prior that the planets must have been stable for the age of the system (40 Myr) by running orbit configurations from our posteriors through N-body simulations and varying the masses of the planets. We found that only assuming the planets are both coplanar and near 1:2:4:8 period commensurabilities produces dynamically stable orbits in large quantities. Our posterior of stable coplanar orbits tightly constrains the planets\u27 orbits, and we discuss implications for the outermost planet b shaping the debris disk. A four-planet resonance lock is not necessary for stability up to now. However, planet pairs d and e, and c and d, are each likely locked in two-body resonances for stability if their component masses are above 6 M Jup and 7 M Jup, respectively. Combining the dynamical and luminosity constraints on the masses using hot-start evolutionary models and a system age of 42 ± 5 Myr, we found the mass of planet b to be 5.8 ± 0.5 M Jup, and the masses of planets c, d, and e to be each

    The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics from 10 To 100 Au

    Get PDF
    We present a statistical analysis of the first 300 stars observed by the Gemini Planet Imager Exoplanet Survey. This subsample includes six detected planets and three brown dwarfs; from these detections and our contrast curves we infer the underlying distributions of substellar companions with respect to their mass, semimajor axis, and host stellar mass. We uncover a strong correlation between planet occurrence rate and host star mass, with stars M ∗ \u3e1.5 M o more likely to host planets with masses between 2 and 13M Jup and semimajor axes of 3-100 au at 99.92% confidence. We fit a double power-law model in planet mass (m) and semimajor axis (a) for planet populations around high-mass stars (M ∗ \u3e1.5 M o) of the form , finding α = -2.4 +0.8 and β = -2.0 +0.5, and an integrated occurrence rate of % between 5-13M Jup and 10-100 au. A significantly lower occurrence rate is obtained for brown dwarfs around all stars, with % of stars hosting a brown dwarf companion between 13-80M Jup and 10-100 au. Brown dwarfs also appear to be distributed differently in mass and semimajor axis compared to giant planets; whereas giant planets follow a bottom-heavy mass distribution and favor smaller semimajor axes, brown dwarfs exhibit just the opposite behaviors. Comparing to studies of short-period giant planets from the radial velocity method, our results are consistent with a peak in occurrence of giant planets between ∼1 and 10 au. We discuss how these trends, including the preference of giant planets for high-mass host stars, point to formation of giant planets by core/pebble accretion, and formation of brown dwarfs by gravitational instability
    corecore