36 research outputs found

    Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial

    Get PDF
    Background: Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke. Methods: We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515. Findings: Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p<0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (<1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (<1%) deaths in the albiglutide group. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes. Funding: GlaxoSmithKline

    Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status.

    Get PDF
    MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17β-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells

    The biochemical basis for the cooperative action of microRNAs

    No full text
    © 2020 National Academy of Sciences. All rights reserved. In cells, closely spaced microRNA (miRNA) target sites within a messenger RNA (mRNA) can act cooperatively, leading to more repression of the target mRNA than expected by independent action at each site. Using purified miRNA-Argonaute (AGO2) complexes, synthetic target RNAs, and a purified domain of TNRC6B (GW182 in flies) that is able to simultaneously bind multiple AGO proteins, we examined both the occupancies and binding affinities of miRNA-AGO2 complexes and target RNAs with either one site or two cooperatively spaced sites. On their own, miRNA-AGO2 complexes displayed little if any cooperative binding to dual sites. In contrast, in the presence of the AGO-binding region of TNRC6B, we observed strong cooperative binding to dual sites, with almost no singly bound target RNAs and substantially increased binding affinities and Hill coefficients. Cooperative binding was retained when the two sites were for two different miRNAs or when the two sites were bound to miRNAs loaded into two different AGO paralogs, AGO1 and AGO2. The improved binding affinity was attributable primarily to a reduced rate of dissociation between miRNA-AGO complexes and their dual-site targets. Thus, the multivalent binding of TNRC6 enables cooperative binding of miRNA-AGO complexes to target RNAs, thereby explaining the basis of cooperative action

    The Conserved RNA Exonuclease Rexo5 Is Required for 3′ End Maturation of 28S rRNA, 5S rRNA, and snoRNAs

    No full text
    Non-coding RNA biogenesis in higher eukaryotes has not been fully characterized. Here, we studied the Drosophila melanogaster Rexo5 (CG8368) protein, a metazoan-specific member of the DEDDh 3′-5′ single-stranded RNA exonucleases, by genetic, biochemical, and RNA-sequencing approaches. Rexo5 is required for small nucleolar RNA (snoRNA) and rRNA biogenesis and is essential in D. melanogaster. Loss-of-function mutants accumulate improperly 3′ end-trimmed 28S rRNA, 5S rRNA, and snoRNA precursors in vivo. Rexo5 is ubiquitously expressed at low levels in somatic metazoan cells but extremely elevated in male and female germ cells. Loss of Rexo5 leads to increased nucleolar size, genomic instability, defective ribosome subunit export, and larval death. Loss of germline expression compromises gonadal growth and meiotic entry during germline development

    Eukaryote-Specific Insertion Elements Control Human ARGONAUTE Slicer Activity

    Get PDF
    We have solved the crystal structure of human ARGONAUTE1 (hAGO1) bound to endogenous 5′-phosphorylated guide RNAs. To identify changes that evolutionarily rendered hAGO1 inactive, we compared our structure with guide-RNA-containing and cleavage-active hAGO2. Aside from mutation of a catalytic tetrad residue, proline residues at positions 670 and 675 in hAGO1 introduce a kink in the cS7 loop, forming a convex surface within the hAGO1 nucleic-acid-binding channel near the inactive catalytic site. We predicted that even upon restoration of the catalytic tetrad, hAGO1-cS7 sterically hinders the placement of a fully paired guide-target RNA duplex into the endonuclease active site. Consistent with this hypothesis, reconstitution of the catalytic tetrad with R805H led to low-level hAGO1 cleavage activity, whereas combining R805H with cS7 substitutions P670S and P675Q substantially augmented hAGO1 activity. Evolutionary amino acid changes to hAGO1 were readily reversible, suggesting that loading of guide RNA and pairing of seed-based miRNA and target RNA constrain its sequence drift

    Abstract A085: miR-222/221 in aggressive breast cancer

    No full text
    MicroRNAs (miRNAs) are small non coding RNAs that regulate gene expression at post-transcriptional level through translational inhibition and/or degradation of mRNA target genes. Recent evidence points to a widespread role for miRNAs in the initiation and progression of tumorigenesis in a plethora of tissues including the mammary gland. Aberrant miRNA expression profiles have been described in breast cancer specimens compared to normal tissues, discriminating breast tumors with different clinico-biological phenotypes. In our previous publications, we have demonstrated that miR-222/221 cluster is highly expressed in aggressive breast cancer and high levels of miR-222/221 may confer a proliferation advantage to cancer cells and resistance to therapeutic agents by repressing several genes such as ERα;, CDKN1B, BIM, FOXO3, CAV1, PTEN. To demonstrate the in vivo role of miR-222/221 cluster in breast cancer initiation and progression, we have genetically deleted miR-222/221 gene in the MMTV-PyVT mouse model that develops multifocal mammary adenocarcinoma and lung metastatic lesions in 80% of the population. The tumor latency and multiplicity were assessed and none of these parameters were significantly affected by miR-222/221 ablation. Interestingly, lack of miR-222/221 impairs the development of lung metastasis with a reduction of the metastatic load of the lung. Moreover, metastases arising from miR-222/221 deficient cells present a greater cytoarchitectural similarity and a reduced rate of mitosis and apoptosis. We also show that loss of miR-222/221 modulates the transcriptome and miRNA expression profiles of mouse breast tumors and cancer cells, stimulating a stronger estrogen receptor alpha transcriptional network and a suppression of the cancer stem cells population
    corecore