139 research outputs found

    FLIP: A Targetable Mediator of Resistance to Radiation in Non-Small Cell Lung Cancer

    Get PDF
    Resistance to radiotherapy due to insufficient cancer cell death is a significant cause of treatment failure in non-small cell lung cancer (NSCLC). The endogenous caspase-8 inhibitor, FLIP, is a critical regulator of cell death that is frequently overexpressed in NSCLC and is an established inhibitor of apoptotic cell death induced via the extrinsic death receptor pathway. Apoptosis induced by ionizing radiation (IR) has been considered to be mediated predominantly via the intrinsic apoptotic pathway; however, we found that IR-induced apoptosis was significantly attenuated in NSCLC cells when caspase-8 was depleted using RNA interference (RNAi), suggesting involvement of the extrinsic apoptosis pathway. Moreover, overexpression of wild-type FLIP, but not a mutant form that cannot bind the critical death receptor adaptor protein FADD, also attenuated IR-induced apoptosis, confirming the importance of the extrinsic apoptotic pathway as a determinant of response to IR in NSCLC. Importantly, when FLIP protein levels were down-regulated by RNAi, IRinduced cell death was significantly enhanced. The clinically relevant histone deacetylase (HDAC) inhibitors vorinostat and entinostat were subsequently found to sensitize a subset of NSCLC cell lines to IR in a manner that was dependent on their ability to suppress FLIP expression and promote activation of caspase-8. Entinostat also enhanced the anti-tumor activity of IR in vivo. Therefore, FLIP down-regulation induced by HDAC inhibitors is a potential clinical strategy to radio-sensitize NSCLC and thereby improve response to radiotherapy. Overall, this study provides the first evidence that pharmacological inhibition of FLIP may improve response of NCSLC to IR

    Immune-derived PD-L1 gene expression defines a subgroup of stage II/III colorectal cancer patients with favorable prognosis that may be harmed by adjuvant chemotherapy

    Get PDF
    Abstract A recent phase II study of patients with metastatic colorectal carcinoma showed that mismatch repair gene status was predictive of clinical response to PD-1–targeting immune checkpoint blockade. Further examination revealed strong correlation between PD-L1 protein expression and microsatellite instability (MSI) in stage IV colorectal carcinoma, suggesting that the amount of PD-L1 protein expression could identify late-stage patients who might benefit from immunotherapy. To assess whether the clinical associations between PD-L1 gene expression and MSI identified in metastatic colorectal carcinoma are also present in stage II/III colorectal carcinoma, we used in silico analysis to elucidate the cell types expressing the PD-L1 gene. We found a statistically significant association of PD-L1 gene expression with MSI in early-stage colorectal carcinoma (P &amp;lt; 0.001) and show that, unlike in non–colorectal carcinoma tumors, PD-L1 is derived predominantly from the immune infiltrate. We demonstrate that PD-L1 gene expression has positive prognostic value in the adjuvant disease setting (PD-L1low vs. PD-L1high HR = 9.09; CI, 2.11–39.10). PD-L1 gene expression had predictive value, as patients with high PD-L1 expression appear to be harmed by standard-of-care treatment (HR = 4.95; CI, 1.10–22.35). Building on the promising results from the metastatic colorectal carcinoma PD-1–targeting trial, we provide compelling evidence that patients with PD-L1high/MSI/immunehigh stage II/III colorectal carcinoma should not receive standard chemotherapy. This conclusion supports the rationale to clinically evaluate this patient subgroup for PD-1 blockade treatment. Cancer Immunol Res; 4(7); 582–91. ©2016 AACR.</jats:p

    Pyrimidine biosynthesis is not an essential function for trypanosoma brucei bloodstream forms

    Get PDF
    &lt;p&gt;Background: African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite.&lt;/p&gt; &lt;p&gt;Methodology/Principal Findings: Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line.&lt;/p&gt; &lt;p&gt;Conclusions/Significance: Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.&lt;/p&gt

    A machine learning platform to optimize the translation of personalized network models to the clinic

    Get PDF
    PURPOSE Dynamic network models predict clinical prognosis and inform therapeutic intervention by elucidating disease-driven aberrations at the systems level. However, the personalization of model predictions requires the profiling of multiple model inputs, which hampers clinical translation. PATIENTS AND METHODS We applied APOPTO-CELL, a prognostic model of apoptosis signaling, to showcase the establishment of computational platforms that require a reduced set of inputs. We designed two distinct and complementary pipelines: a probabilistic approach to exploit a consistent subpanel of inputs across the whole cohort (Ensemble) and a machine learning approach to identify a reduced protein set tailored for individual patients (Tree). Development was performed on a virtual cohort of 3,200,000 patients, with inputs estimated from clinically relevant protein profiles. Validation was carried out in an in-house stage III colorectal cancer cohort, with inputs profiled in surgical resections by reverse phase protein array (n = 120) and/or immunohistochemistry (n = 117). RESULTS Ensemble and Tree reproduced APOPTO-CELL predictions in the virtual patient cohort with 92% and 99% accuracy while decreasing the number of inputs to a consistent subset of three proteins (40% reduction) or a personalized subset of 2.7 proteins on average (46% reduction), respectively. Ensemble and Tree retained prognostic utility in the in-house colorectal cancer cohort. The association between the Ensemble accuracy and prognostic value (Spearman ρ = 0.43; P = .02) provided a rationale to optimize the input composition for specific clinical settings. Comparison between profiling by reverse phase protein array (gold standard) and immunohistochemistry (clinical routine) revealed that the latter is a suitable technology to quantify model inputs. CONCLUSION This study provides a generalizable framework to optimize the development of network-based prognostic assays and, ultimately, to facilitate their integration in the routine clinical workflow

    Constitutive and Treatment-Induced CXCL8-Signalling Selectively Modulates the Efficacy of Anti-Metabolite Therapeutics in Metastatic Prostate Cancer

    Get PDF
    <div><h3>Background</h3><p>The current study was undertaken to characterize the effect of anti-metabolites on inducing CXCL8 signaling and determining whether the constitutive and/or drug-induced CXCL8 signaling in metastatic prostate cancer (CaP) cells modulates their sensitivity to this class of agent.</p> <h3>Methods</h3><p>The response of metastatic CaP cells to 5-Fluorouracil (5-FU), Pemetrexed or Tomudex was determined using cell count assays, flow cytometry and PARP cleavage analysis. Quantitative-PCR, ELISA and immunoblots were employed to determine effects of drugs or CXCL8 administration on target gene/protein expression.</p> <h3>Results</h3><p>Administration of 5-FU but not pemetrexed potentiated CXCL8 secretion and increased CXCR1 and CXCR2 gene expression in metastatic PC3 cells. Consistent with this, the inhibition of CXCL8 signaling using a CXCR2 antagonist, AZ10397767, increased the cytotoxicity of 5-FU by 4-fold (P<0.001), and increased 5-FU-induced apoptosis in PC3 cells (P<0.01). In contrast, while administration of AZ10397767 had no effect on the sensitivity of pemetrexed, the CXCR2 antagonist exerted the greatest effect in increasing the sensitivity of PC3 cells to Tomudex, a directed thymidylate synthase (TS) inhibitor. Subsequent experiments confirmed that administration of recombinant human CXCL8 increased TS expression, a response mediated in part by the CXCR2 receptor. Moreover, siRNA-mediated knockdown of the CXCL8-target gene Bcl-2 increased the sensitivity of PC3 cells to 5-FU.</p> <h3>Conclusions</h3><p>CXCL8 signaling provides a selective resistance of metastatic prostate cancer cells to specific anti-metabolites by promoting a target-associated resistance, in addition to underpinning an evasion of treatment-induced apoptosis.</p> </div

    Evaluating predictive pharmacogenetic signatures of adverse events in colorectal cancer patients treated with fluoropyrimidines

    Get PDF
    The potential clinical utility of genetic markers associated with response to fluoropyrimidine treatment in colorectal cancer patients remains controversial despite extensive study. Our aim was to test the clinical validity of both novel and previously identified markers of adverse events in a broad clinical setting. We have conducted an observational pharmacogenetic study of early adverse events in a cohort study of 254 colorectal cancer patients treated with 5-fluorouracil or capecitabine. Sixteen variants of nine key folate (pharmacodynamic) and drug metabolising (pharmacokinetic) enzymes have been analysed as individual markers and/or signatures of markers. We found a significant association between TYMP S471L (rs11479) and early dose modifications and/or severe adverse events (adjusted OR = 2.02 [1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p = 0.01 respectively). There was also a significant association between these phenotypes and a signature of DPYD mutations (Adjusted OR = 3.96 [1.17; 13.33], p = 0.03, adjusted OR = 6.76 [1.99; 22.96], p = 0.002 respectively). We did not identify any significant associations between the individual candidate pharmacodynamic markers and toxicity. If a predictive test for early adverse events analysed the TYMP and DPYD variants as a signature, the sensitivity would be 45.5 %, with a positive predictive value of just 33.9 % and thus poor clinical validity. Most studies to date have been under-powered to consider multiple pharmacokinetic and pharmacodynamic variants simultaneously but this and similar individualised data sets could be pooled in meta-analyses to resolve uncertainties about the potential clinical utility of these markers
    corecore