146 research outputs found

    PRIMUS: The relationship between Star formation and AGN accretion

    Full text link
    We study the evidence for a connection between active galactic nuclei (AGN) fueling and star formation by investigating the relationship between the X-ray luminosities of AGN and the star formation rates (SFRs) of their host galaxies. We identify a sample of 309 AGN with 1041<LX<104410^{41}<L_\mathrm{X}<10^{44} erg s−1^{-1} at 0.2<z<1.20.2 < z < 1.2 in the PRIMUS redshift survey. We find AGN in galaxies with a wide range of SFR at a given LXL_X. We do not find a significant correlation between SFR and the observed instantaneous LXL_X for star forming AGN host galaxies. However, there is a weak but significant correlation between the mean LXL_\mathrm{X} and SFR of detected AGN in star forming galaxies, which likely reflects that LXL_\mathrm{X} varies on shorter timescales than SFR. We find no correlation between stellar mass and LXL_\mathrm{X} within the AGN population. Within both populations of star forming and quiescent galaxies, we find a similar power-law distribution in the probability of hosting an AGN as a function of specific accretion rate. Furthermore, at a given stellar mass, we find a star forming galaxy ∼2−3\sim2-3 more likely than a quiescent galaxy to host an AGN of a given specific accretion rate. The probability of a galaxy hosting an AGN is constant across the main sequence of star formation. These results indicate that there is an underlying connection between star formation and the presence of AGN, but AGN are often hosted by quiescent galaxies

    PRIMUS: An observationally motivated model to connect the evolution of the AGN and galaxy populations out to z~1

    Full text link
    We present an observationally motivated model to connect the AGN and galaxy populations at 0.2<z<1.0 and predict the AGN X-ray luminosity function (XLF). We start with measurements of the stellar mass function of galaxies (from the Prism Multi-object Survey) and populate galaxies with AGNs using models for the probability of a galaxy hosting an AGN as a function of specific accretion rate. Our model is based on measurements indicating that the specific accretion rate distribution is a universal function across a wide range of host stellar mass with slope gamma_1 = -0.65 and an overall normalization that evolves with redshift. We test several simple assumptions to extend this model to high specific accretion rates (beyond the measurements) and compare the predictions for the XLF with the observed data. We find good agreement with a model that allows for a break in the specific accretion rate distribution at a point corresponding to the Eddington limit, a steep power-law tail to super-Eddington ratios with slope gamma_2 = -2.1 +0.3 -0.5, and a scatter of 0.38 dex in the scaling between black hole and host stellar mass. Our results show that samples of low luminosity AGNs are dominated by moderately massive galaxies (M* ~ 10^{10-11} M_sun) growing with a wide range of accretion rates due to the shape of the galaxy stellar mass function rather than a preference for AGN activity at a particular stellar mass. Luminous AGNs may be a severely skewed population with elevated black hole masses relative to their host galaxies and in rare phases of rapid accretion.Comment: 11 pages, 5 figures, emulateapj format, updated to match version accepted for publication in Ap

    PRIMUS + DEEP2: Clustering of X-ray, Radio and IR-AGN at z~0.7

    Full text link
    We measure the clustering of X-ray, radio, and mid-IR-selected active galactic nuclei (AGN) at 0.2 < z < 1.2 using multi-wavelength imaging and spectroscopic redshifts from the PRIMUS and DEEP2 redshift surveys, covering 7 separate fields spanning ~10 square degrees. Using the cross-correlation of AGN with dense galaxy samples, we measure the clustering scale length and slope, as well as the bias, of AGN selected at different wavelengths. Similar to previous studies, we find that X-ray and radio AGN are more clustered than mid-IR-selected AGN. We further compare the clustering of each AGN sample with matched galaxy samples designed to have the same stellar mass, star formation rate, and redshift distributions as the AGN host galaxies and find no significant differences between their clustering properties. The observed differences in the clustering of AGN selected at different wavelengths can therefore be explained by the clustering differences of their host populations, which have different distributions in both stellar mass and star formation rate. Selection biases inherent in AGN selection, therefore, determine the clustering of observed AGN samples. We further find no significant difference between the clustering of obscured and unobscured AGN, using IRAC or WISE colors or X-ray hardness ratio.Comment: Accepted to ApJ. 23 emulateapj pages, 15 figures, 4 table

    PRIMUS: Galaxy Clustering as a Function of Luminosity and Color at 0.2<z<1

    Get PDF
    We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2<z<1.0 in the PRIsm MUlti-object Survey (PRIMUS). We quantify the clustering with the redshift-space and projected two-point correlation functions, xi(rp,pi) and wp(rp), using volume-limited samples constructed from a parent sample of over 130,000 galaxies with robust redshifts in seven independent fields covering 9 sq. deg. of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1<rp<1 Mpc/h) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values between b_gal=0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z=1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that 'cosmic variance' can be a significant source of uncertainty for high-redshift clustering measurements.Comment: 22 pages, 21 figures, matches version published in Ap

    Supermassive black holes in cosmological simulations - II : the AGN population and predictions for upcoming X-ray missions

    Get PDF
    In large-scale hydrodynamical cosmological simulations, the fate of massive galaxies is mainly dictated by the modelling of feedback from active galactic nuclei (AGNs). The amount of energy released by AGN feedback is proportional to the mass that has been accreted on to the black holes (BHs), but the exact subgrid modelling of AGN feedback differs in all simulations. While modern simulations reliably produce populations of quiescent massive galaxies at z = 10(45) erg s(-1) (although this is sensitive to AGN variability), and leads to smaller fractions of AGN in massive galaxies than in the observations at zPeer reviewe
    • …
    corecore