6 research outputs found
Association of a single nucleotide polymorphism combination pattern of the Klotho gene with non-cardiovascular death in patients with chronic kidney disease
Chronic kidney disease (CKD) is associated with an elevated risk of all-cause mortality, with cardiovascular death being extensively investigated. However, non-cardiovascular mortality represents the biggest percentage, showing an evident increase in recent years. Klotho is a gene highly expressed in the kidney, with a clear influence on lifespan. Low levels of Klotho have been linked to CKD progression and adverse outcomes. Single nucleotide polymorphisms (SNPs) of the Klotho gene have been associated with several diseases, but studies investigating the association of Klotho SNPs with noncardiovascular death in CKD populations are lacking. The main aim of this study was to assess whether 11 Klotho SNPs were associated with non-cardiovascular death in a subpopulation of the National Observatory of Atherosclerosis in Nephrology (NEFRONA) study (n ¼ 2185 CKD patients). After 48 months of follow-up, 62 cardiovascular deaths and 108 non-cardiovascular deaths were recorded. We identified a high non-cardiovascular death risk combination of SNPs corresponding to individuals carrying the most frequent allele (G) at rs562020, the rare allele (C) at rs2283368 and homozygotes for the rare allele (G) at rs2320762 (rs562020 GG/AG þ rs2283368 CC/CT þ rs2320762 GG). Among the patients with the three SNPs genotyped (n ¼ 1016), 75 (7.4%) showed this combination. Furthermore, 95 (9.3%) patients showed a low-risk combination carrying all the opposite genotypes (rs562020 AA þ rs2283368 TT þ rs2320762 GT/TT). All the other combinations [n ¼ 846 (83.3%)] were considered as normal risk. Using competing risk regression analysis, we confirmed that the proposed combinations are independently associated with a higher fhazard ratio [HR] 3.28 [confidence interval (CI) 1.51-7.12]g and lower [HR 6 × 10- (95% CI 3.3 × 10--1.1 × 10-)] risk of suffering a non-cardiovascular death in the CKD population of the NEFRONA cohort compared with patients with the normal-risk combination. Determination of three SNPs of the Klotho gene could help in the prediction of non-cardiovascular death in CKD
Association of candidate gene polymorphisms with chronic kidney disease : Results of a case-control analysis in the NEFRONA cohort
Chronic kidney disease (CKD) is a major risk factor for end-stage renal disease, cardiovascular disease and premature death. Despite classical clinical risk factors for CKD and some genetic risk factors have been identified, the residual risk observed in prediction models is still high. Therefore, new risk factors need to be identified in order to better predict the risk of CKD in the population. Here, we analyzed the genetic association of 79 SNPs of proteins associated with mineral metabolism disturbances with CKD in a cohort that includes 2,445 CKD cases and 559 controls. Genotyping was performed with matrix assisted laser desorption ionization-time of flight mass spectrometry. We used logistic regression models considering different genetic inheritance models to assess the association of the SNPs with the prevalence of CKD, adjusting for known risk factors. Eight SNPs (rs1126616, rs35068180, rs2238135, rs1800247, rs385564, rs4236, rs2248359, and rs1564858) were associated with CKD even after adjusting by sex, age and race. A model containing five of these SNPs (rs1126616, rs35068180, rs1800247, rs4236, and rs2248359), diabetes and hypertension showed better performance than models considering only clinical risk factors, significantly increasing the area under the curve of the model without polymorphisms. Furthermore, one of the SNPs (the rs2248359) showed an interaction with hypertension, being the risk genotype affecting only hypertensive patients. We conclude that 5 SNPs related to proteins implicated in mineral metabolism disturbances (Osteopontin, osteocalcin, matrix gla protein, matrix metalloprotease 3 and 24 hydroxylase) are associated to an increased risk of suffering CKD
EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS DE LOS TABLEROS DE MADERA PLÁSTICA PRODUCIDOS EN CUBA RESPECTO A LOS TABLEROS CONVENCIONALES
Las propiedades físico-mecánicas de los tableros de madera plástica se evaluaron y compararon con los tableros convencionales (tablero de partículas de bagazo de caña, tablero contrachapa - do y tablero de fibras de bagazo de caña) más utilizados en Cuba. El tablero de madera plástica se elaboró con residuos de la industria forestal (aserrín), residuos industriales (termoplásticos) y aditivos químicos en proporciones de 50, 30 y 20 %, respectivamente; el tablero se obtuvo mediante moldeo por extrusión. Los resultados se analizaron con la prueba de Kruskal-Wallis y comparaciones múltiples post-hoc DMS de Fisher, para determinar las diferencias con relación a los tableros conven - cionales. Los resultados indican que las propiedades físicas de los tableros de madera plástica mejora - ron con el aumento de la densidad. La absorción de agua e hinchamiento fueron menores respecto a los tableros convencionales, mientras que las propiedades mecánicas (flexión, compresión y tracción) fueron superiores. La tracción, flexión y compresión en los tableros de madera plástica fue estadística - mente similar ( P > 0.05) que en los tableros contrachapados. Dadas sus propiedades, se considera que los tableros de madera plástica son capaces de sustituir tanto a los convencionales como a los de madera en condiciones de intemperie
Agreement in the assessment of metastatic spine disease using scoring systems
Licensed under the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0
Recommended from our members
GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19
Data availability: Downloadable summary data are available through the GenOMICC data site (https://genomicc.org/data). Summary statistics are available, but without the 23andMe summary statistics, except for the 10,000 most significant hits, for which full summary statistics are available. The full GWAS summary statistics for the 23andMe discovery dataset will be made available through 23andMe to qualified researchers under an agreement with 23andMe that protects the privacy of the 23andMe participants. For further information and to apply for access to the data, see the 23andMe website (https://research.23andMe.com/dataset-access/). All individual-level genotype and whole-genome sequencing data (for both academic and commercial uses) can be accessed through the UKRI/HDR UK Outbreak Data Analysis Platform (https://odap.ac.uk). A restricted dataset for a subset of GenOMICC participants is also available through the Genomics England data service. Monocyte RNA-seq data are available under the title ‘Monocyte gene expression data’ within the Oxford University Research Archives (https://doi.org/10.5287/ora-ko7q2nq66). Sequencing data will be made freely available to organizations and researchers to conduct research in accordance with the UK Policy Framework for Health and Social Care Research through a data access agreement. Sequencing data have been deposited at the European Genome–Phenome Archive (EGA), which is hosted by the EBI and the CRG, under accession number EGAS00001007111.Extended data figures and tables are available online at https://www.nature.com/articles/s41586-023-06034-3#Sec21 .Supplementary information is available online at https://www.nature.com/articles/s41586-023-06034-3#Sec22 .Code availability:
Code to calculate the imputation of P values on the basis of SNPs in linkage disequilibrium is available at GitHub (https://github.com/baillielab/GenOMICC_GWAS).Acknowledgements: We thank the members of the Banco Nacional de ADN and the GRA@CE cohort group; and the research participants and employees of 23andMe for making this work possible. A full list of contributors who have provided data that were collated in the HGI project, including previous iterations, is available online (https://www.covid19hg.org/acknowledgements).Change history: 11 July 2023: A Correction to this paper has been published at: https://doi.org/10.1038/s41586-023-06383-z. -- In the version of this article initially published, the name of Ana Margarita Baldión-Elorza, of the SCOURGE Consortium, appeared incorrectly (as Ana María Baldion) and has now been amended in the HTML and PDF versions of the article.Copyright © The Author(s) 2023, Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).GenOMICC was funded by Sepsis Research (the Fiona Elizabeth Agnew Trust), the Intensive Care Society, a Wellcome Trust Senior Research Fellowship (to J.K.B., 223164/Z/21/Z), the Department of Health and Social Care (DHSC), Illumina, LifeArc, the Medical Research Council, UKRI, a BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070 and BBS/E/D/30002275) and UKRI grants MC_PC_20004, MC_PC_19025, MC_PC_1905 and MRNO2995X/1. A.D.B. acknowledges funding from the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z), the Edinburgh Clinical Academic Track (ECAT) programme. This research is supported in part by the Data and Connectivity National Core Study, led by Health Data Research UK in partnership with the Office for National Statistics and funded by UK Research and Innovation (grant MC_PC_20029). Laboratory work was funded by a Wellcome Intermediate Clinical Fellowship to B.F. (201488/Z/16/Z). We acknowledge the staff at NHS Digital, Public Health England and the Intensive Care National Audit and Research Centre who provided clinical data on the participants; and the National Institute for Healthcare Research Clinical Research Network (NIHR CRN) and the Chief Scientist’s Office (Scotland), who facilitate recruitment into research studies in NHS hospitals, and to the global ISARIC and InFACT consortia. GenOMICC genotype controls were obtained using UK Biobank Resource under project 788 funded by Roslin Institute Strategic Programme Grants from the BBSRC (BBS/E/D/10002070 and BBS/E/D/30002275) and Health Data Research UK (HDR-9004 and HDR-9003). UK Biobank data were used in the GSMR analyses presented here under project 66982. The UK Biobank was established by the Wellcome Trust medical charity, Medical Research Council, Department of Health, Scottish Government and the Northwest Regional Development Agency. It has also had funding from the Welsh Assembly Government, British Heart Foundation and Diabetes UK. The work of L.K. was supported by an RCUK Innovation Fellowship from the National Productivity Investment Fund (MR/R026408/1). J.Y. is supported by the Westlake Education Foundation. SCOURGE is funded by the Instituto de Salud Carlos III (COV20_00622 to A.C., PI20/00876 to C.F.), European Union (ERDF) ‘A way of making Europe’, Fundación Amancio Ortega, Banco de Santander (to A.C.), Cabildo Insular de Tenerife (CGIEU0000219140 ‘Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19’ to C.F.) and Fundación Canaria Instituto de Investigación Sanitaria de Canarias (PIFIISC20/57 to C.F.). We also acknowledge the contribution of the Centro National de Genotipado (CEGEN) and Centro de Supercomputación de Galicia (CESGA) for funding this project by providing supercomputing infrastructures. A.D.L. is a recipient of fellowships from the National Council for Scientific and Technological Development (CNPq)-Brazil (309173/2019-1 and 201527/2020-0)