1,720 research outputs found

    Terrace grading of SiGe for high-quality virtual substrates

    Get PDF
    Silicon germanium (SiGe) virtual substrates of final germanium composition x = 0.50 have been fabricated using solid-source molecular beam epitaxy with a thickness of 2 µm. A layer structure that helps limit the size of dislocation pileups associated with the modified Frank–Read dislocation multiplication mechanism has been studied. It is shown that this structure can produce lower threading dislocation densities than conventional linearly graded virtual substrates. Cross-sectional transmission electron microscopy shows the superior quality of the dislocation network in the graded regions with a lower rms roughness shown by atomic force microscopy. X-ray diffractometry shows these layers to be highly relaxed. This method of Ge grading suggests that high-quality virtual substrates can be grown considerably thinner than with conventional grading methods

    Fourth and Fifth Grade Departmentalization: A Transition to Middle School

    Get PDF
    The difficulties involved in the transition for students leaving elementary school, where there typically exists little departmentalization, to the middle school, where departmentalization is the primary structure, have often been noted by scholars. While some studies cited in this work indicated a decrease in student achievement with the implementation of departmentalization, this approach should not be categorically rejected. In this regard, this study examines how elementary students can begin to be better prepared in fourth and fifth grades to enter the departmentalization system

    Utility of Surgeon-Performed Ultrasound Assessment of the Lateral Neck for Metastatic Papillary Thyroid Cancer

    Get PDF
    Ultrasound is the recommended staging modality for papillary thyroid cancer. Surgeons proficient in US assessment of the neck and experienced in the management of papillary thyroid cancer (PTC) appear uniquely qualified to assess the lateral cervical lymph nodes for metastatic disease. Of 310 patients treated for PTC between 2000 and 2008, 109 underwent surgeon-performed ultrasound (SUS) of the lateral neck preoperatively. Fine needle aspiration was performed on suspicious lateral lymph nodes. SUS findings were compared with FNA cytology and results of postoperative imaging studies. The sensitivity and negative predictive value of SUS were 88% and 97%, respectively. Four patients were found to have missed metastatic disease within 6 months. No patient underwent a nontherapeutic neck dissection. SUS combined with US-guided FNA of suspicious lymph nodes can accurately stage PTC to reliably direct surgical management

    Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility

    Get PDF
    Processes occurring in the tropical upper troposphere and lower stratosphere (UT/LS) are of importance for the global climate, for the stratospheric dynamics and air chemistry, and they influence the global distribution of water vapour, trace gases and aerosols. The mechanisms underlying cloud formation and variability in the UT/LS are of scientific concern as these still are not adequately described and quantified by numerical models. Part of the reasons for this is the scarcity of detailed in-situ measurements in particular from the Tropical Transition Layer (TTL) within the UT/LS. In this contribution we provide measurements of particle number densities and the amounts of non-volatile particles in the submicron size range present in the UT/LS over Southern Brazil, West Africa, and Northern Australia. The data were collected in-situ on board of the Russian high altitude research aircraft M-55 "Geophysica" using the specialised COPAS (COndensation PArticle counting System) instrument during the TROCCINOX (Araçatuba, Brazil, February 2005), the SCOUT-O3 (Darwin, Australia, December 2005), and SCOUT-AMMA (Ouagadougou, Burkina Faso, August 2006) campaigns. The vertical profiles obtained are compared to those from previous measurements from the NASA DC-8 and NASA WB-57F over Costa Rica and other tropical locations between 1999 and 2007. The number density of the submicron particles as function of altitude was found to be remarkably constant (even back to 1987) over the tropical UT/LS altitude band such that a parameterisation suitable for models can be extracted from the measurements. At altitudes corresponding to potential temperatures above 430 K a slight increase of the number densities from 2005/2006 results from the data in comparison to the 1987 to 2007 measurements. The origins of this increase are unknown. By contrast the data from Northern hemispheric mid latitudes do not exhibit such an increase between 1999 and 2006. Vertical profiles of the non-volatile fraction of the submicron particles were also measured by a COPAS channel and are presented here. The resulting profiles of the non-volatile number density fraction show a pronounced maximum of 50% in the tropical TTL over Australia and West Africa. Below and above this fraction is much lower attaining values of 10% and smaller. In the lower stratosphere the fine particles mostly consist of sulphuric acid which is reflected in the low numbers of non-volatile residues measured by COPAS. Without detailed chemical composition measurements the reason for the increase of non-volatile particle fractions cannot yet be given. The long distance transfer flights to Brazil, Australia and West-Africa were executed during a time window of 17 months within a period of relative volcanic quiescence. Thus the data measured during these transfers represent a "snapshot picture" documenting the status of a significant part of the global UT/LS aerosol (with sizes below 1 μm) at low concentration levels 15 years after the last major (i.e., the 1991 Mount Pinatubo) eruption. The corresponding latitudinal distributions of the measured particle number densities are also presented in this paper in order to provide input on the UT/LS background aerosol for modelling purposes

    Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility

    Get PDF
    Processes occurring in the tropical upper troposphere (UT), the Tropical Transition Layer (TTL), and the lower stratosphere (LS) are of importance for the global climate, for stratospheric dynamics and air chemistry, and for their influence on the global distribution of water vapour, trace gases and aerosols. In this contribution we present aerosol and trace gas (in-situ) measurements from the tropical UT/LS over Southern Brazil, Northern Australia, and West Africa. The instruments were operated on board of the Russian high altitude research aircraft M-55 "Geophysica" and the DLR Falcon-20 during the campaigns TROCCINOX (Araçatuba, Brazil, February 2005), SCOUT-O3 (Darwin, Australia, December 2005), and SCOUT-AMMA (Ouagadougou, Burkina Faso, August 2006). The data cover submicron particle number densities and volatility from the COndensation PArticle counting System (COPAS), as well as relevant trace gases like N2O, ozone, and CO. We use these trace gas measurements to place the aerosol data into a broader atmospheric context. Also a juxtaposition of the submicron particle data with previous measurements over Costa Rica and other tropical locations between 1999 and 2007 (NASA DC-8 and NASA WB-57F) is provided. The submicron particle number densities, as a function of altitude, were found to be remarkably constant in the tropical UT/LS altitude band for the two decades after 1987. Thus, a parameterisation suitable for models can be extracted from these measurements. Compared to the average levels in the period between 1987 and 2007 a slight increase of particle abundances was found for 2005/2006 at altitudes with potential temperatures, theta, above 430 K. The origins of this increase are unknown except for increases measured during SCOUT-AMMA. Here the eruption of the Soufrière Hills volcano in the Caribbean caused elevated particle mixing ratios. The vertical profiles from Northern hemispheric mid-latitudes between 1999 and 2006 also are compact enough to derive a parameterisation. The tropical profiles all show a broad maximum of particle mixing ratios (between theta ~ 340 K and 390 K) which extends from below the TTL to above the thermal tropopause. Thus these particles are a "reservoir" for vertical transport into the stratosphere. The ratio of non-volatile particle number density to total particle number density was also measured by COPAS. The vertical profiles of this ratio have a maximum of 50% above 370 K over Australia and West Africa and a pronounced minimum directly below. Without detailed chemical composition measurements a reason for the increase of non-volatile particle fractions cannot yet be given. However, half of the particles from the tropical "reservoir" contain compounds other than sulphuric acid and water. Correlations of the measured aerosol mixing ratios with N2O and ozone exhibit compact relationships for the tropical data from SCOUT-AMMA, TROCCINOX, and SCOUT-O3. Correlations with CO are more scattered probably because of the connection to different pollution source regions. We provide additional data from the long distance transfer flights to the campaign sites in Brazil, Australia, and West-Africa. These were executed during a time window of 17 months within a period of relative volcanic quiescence. Thus the data represent a "snapshot picture" documenting the status of a significant part of the global UT/LS fine aerosol at low concentration levels 15 years after the last major (i.e., the 1991 Mount Pinatubo) eruption. The corresponding latitudinal distributions of the measured particle number densities are presented in this paper to provide data of the UT/LS background aerosol for modelling purposes

    Evaluating various composite sampling modes for detecting pathogenic SARS-CoV-2 virus in raw sewage

    Get PDF
    Inadequate sampling approaches to wastewater analyses can introduce biases, leading to inaccurate results such as false negatives and significant over- or underestimation of average daily viral concentrations, due to the sporadic nature of viral input. To address this challenge, we conducted a field trial within the University of Tennessee residence halls, employing different composite sampling modes that encompassed different time intervals (1 h, 2 h, 4 h, 6 h, and 24 h) across various time windows (morning, afternoon, evening, and late-night). Our primary objective was to identify the optimal approach for generating representative composite samples of SARS-CoV-2 from raw wastewater. Utilizing reverse transcription-quantitative polymerase chain reaction, we quantified the levels of SARS-CoV-2 RNA and pepper mild mottle virus (PMMoV) RNA in raw sewage. Our findings consistently demonstrated that PMMoV RNA, an indicator virus of human fecal contamination in water environment, exhibited higher abundance and lower variability compared to pathogenic SARS-CoV-2 RNA. Significantly, both SARS-CoV-2 and PMMoV RNA exhibited greater variability in 1 h individual composite samples throughout the entire sampling period, contrasting with the stability observed in other time-based composite samples. Through a comprehensive analysis of various composite sampling modes using the Quade Nonparametric ANCOVA test with date, PMMoV concentration and site as covariates, we concluded that employing a composite sampler during a focused 6 h morning window for pathogenic SARS-CoV-2 RNA is a pragmatic and cost-effective strategy for achieving representative composite samples within a single day in wastewater-based epidemiology applications. This method has the potential to significantly enhance the accuracy and reliability of data collected at the community level, thereby contributing to more informed public health decision-making during a pandemic

    Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease.

    Get PDF
    Extended laboratory culture and antimicrobial susceptibility testing timelines hinder rapid species identification and susceptibility profiling of bacterial pathogens associated with bovine respiratory disease, the most prevalent cause of cattle mortality in the United States. Whole-genome sequencing offers a culture-independent alternative to current bacterial identification methods, but requires a library of bacterial reference genomes for comparison. To contribute new bacterial genome assemblies and evaluate genetic diversity and variation in antimicrobial resistance genotypes, whole-genome sequencing was performed on bovine respiratory disease-associated bacterial isolates (Histophilus somni, Mycoplasma bovis, Mannheimia haemolytica, and Pasteurella multocida) from dairy and beef cattle. One hundred genomically distinct assemblies were added to the NCBI database, doubling the available genomic sequences for these four species. Computer-based methods identified 11 predicted antimicrobial resistance genes in three species, with none being detected in M. bovis While computer-based analysis can identify antibiotic resistance genes within whole-genome sequences (genotype), it may not predict the actual antimicrobial resistance observed in a living organism (phenotype). Antimicrobial susceptibility testing on 64 H. somni, M. haemolytica, and P. multocida isolates had an overall concordance rate between genotype and phenotypic resistance to the associated class of antimicrobials of 72.7% (P < 0.001), showing substantial discordance. Concordance rates varied greatly among different antimicrobial, antibiotic resistance gene, and bacterial species combinations. This suggests that antimicrobial susceptibility phenotypes are needed to complement genomically predicted antibiotic resistance gene genotypes to better understand how the presence of antibiotic resistance genes within a given bacterial species could potentially impact optimal bovine respiratory disease treatment and morbidity/mortality outcomes
    corecore