23 research outputs found

    Co-Occurrence of Myeloid Sarcoma of the Lymph Node and Acute Monocytic Myeloid Leukemia: A Case Report and Literature Review

    Get PDF
    Background: Acute myeloid leukemia (AML) is the most common leukemia in adults. According to the French-American-British (FAB) system, monocytic leukemia is classified as M5. Myeloid sarcoma further occurs in 3–5% of AML. This is defined as an extramedullary tumor of myeloid cells in the lymph nodes, soft tissues, periosteum, bone, central nervous system (CNS), spinal cord, intestine, mediastinum, prostate, uterus, or ovaries. Case Presentation: Here, we describe the case of a 29-year-old female who presented with fever, swelling of gums, neck pain, and weakness, which had persisted for 1 week. The patient had a white blood cell (WBC) count of 53.5 K/μL, and a peripheral smear revealed a myeloid blast cell (blast) percentage of 8%. Computed tomography (CT) of the neck indicated lymphadenopathy. Fine needle aspiration of the cervical lymph node showed groups of atypical immature myeloid cells, mixed with occasional megakaryocytes, and infiltration of eosinophilic myeloid cells into the lymph node, consistent with myeloid sarcoma. Flow cytometry analysis revealed intermediate to large circulating blasts, with irregular nuclei, fine chromatin, and distinct nucleoli, indicative of AML, with monocytic differentiation. The patient responded well to chemotherapy with fludarabine, cytarabine, granulocyte colony stimulating factor (G-CSF), and idarubicin; WBC counts returned to normal and patient was discharged to home. Conclusion: Myeloid sarcoma of the lymph node is a rare co-occurrence with AML. Results of our study are consistent with the conclusion that early diagnosis and appropriate treatment improve survival

    Ellipro scores of donor epitope specific HLA antibodies are not associated with kidney graft survival

    Get PDF
    In kidney transplantation, donor HLA antibodies are a risk factor for graft loss. Accessibility of donor eplets for HLA antibodies is predicted by the ElliPro score. The clinical usefulness of those scores in relation to transplant outcome is unknown. In a large Dutch kidney transplant cohort, Ellipro scores of pretransplant donor antibodies that can be assigned to known eplets (donor epitope specific HLA antibodies [DESAs]) were compared between early graft failure and long surviving deceased donor transplants. We did not observe a significant Ellipro score difference between the two cohorts, nor significant differences in graft survival between transplants with DESAs having high versus low total Ellipro scores. We conclude that Ellipro scores cannot be used to identify DESAs associated with early versus late kidney graft loss in deceased donor transplants.</p

    Determination of the clinical relevance of donor epitope-specific HLA-antibodies in kidney transplantation

    Get PDF
    In kidney transplantation, survival rates are still partly impaired due to the deleterious effects of donor specific HLA antibodies (DSA). However, not all luminex-defined DSA appear to be clinically relevant. Further analysis of DSA recognizing polymorphic amino acid configurations, called eplets or functional epitopes, might improve the discrimination between clinically relevant vs. irrelevant HLA antibodies. To evaluate which donor epitope-specific HLA antibodies (DESAs) are clinically important in kidney graft survival, relevant and irrelevant DESAs were discerned in a Dutch cohort of 4690 patients using Kaplan–Meier analysis and tested in a cox proportional hazard (CPH) model including nonimmunological variables. Pre-transplant DESAs were detected in 439 patients (9.4%). The presence of certain clinically relevant DESAs was significantly associated with increased risk on graft loss in deceased donor transplantations (p &lt; 0.0001). The antibodies recognized six epitopes of HLA Class I, 3 of HLA-DR, and 1 of HLA-DQ, and most antibodies were directed to HLA-B (47%). Fifty-three patients (69.7%) had DESA against one donor epitope (range 1–5). Long-term graft survival rate in patients with clinically relevant DESA was 32%, rendering DESA a superior parameter to classical DSA (60%). In the CPH model, the hazard ratio (95% CI) of clinically relevant DESAs was 2.45 (1.84–3.25) in deceased donation, and 2.22 (1.25–3.95) in living donation. In conclusion, the developed model shows the deleterious effect of clinically relevant DESAs on graft outcome which outperformed traditional DSA-based risk analysis on antigen level.</p

    Ellipro scores of donor epitope specific HLA antibodies are not associated with kidney graft survival

    Get PDF
    In kidney transplantation, donor HLA antibodies are a risk factor for graft loss. Accessibility of donor eplets for HLA antibodies is predicted by the ElliPro score. The clinical usefulness of those scores in relation to transplant outcome is unknown. In a large Dutch kidney transplant cohort, Ellipro scores of pretransplant donor antibodies that can be assigned to known eplets (donor epitope specific HLA antibodies [DESAs]) were compared between early graft failure and long surviving deceased donor transplants. We did not observe a significant Ellipro score difference between the two cohorts, nor significant differences in graft survival between transplants with DESAs having high versus low total Ellipro scores. We conclude that Ellipro scores cannot be used to identify DESAs associated with early versus late kidney graft loss in deceased donor transplants

    Determination of the clinical relevance of donor epitope-specific HLA-antibodies in kidney transplantation

    Get PDF
    In kidney transplantation, survival rates are still partly impaired due to the deleterious effects of donor specific HLA antibodies (DSA). However, not all luminex-defined DSA appear to be clinically relevant. Further analysis of DSA recognizing polymorphic amino acid configurations, called eplets or functional epitopes, might improve the discrimination between clinically relevant vs. irrelevant HLA antibodies. To evaluate which donor epitope-specific HLA antibodies (DESAs) are clinically important in kidney graft survival, relevant and irrelevant DESAs were discerned in a Dutch cohort of 4690 patients using Kaplan-Meier analysis and tested in a cox proportional hazard (CPH) model including nonimmunological variables. Pre-transplant DESAs were detected in 439 patients (9.4%). The presence of certain clinically relevant DESAs was significantly associated with increased risk on graft loss in deceased donor transplantations (p < 0.0001). The antibodies recognized six epitopes of HLA Class I, 3 of HLA-DR, and 1 of HLA-DQ, and most antibodies were directed to HLA-B (47%). Fifty-three patients (69.7%) had DESA against one donor epitope (range 1-5). Long-term graft survival rate in patients with clinically relevant DESA was 32%, rendering DESA a superior parameter to classical DSA (60%). In the CPH model, the hazard ratio (95% CI) of clinically relevant DESAs was 2.45 (1.84-3.25) in deceased donation, and 2.22 (1.25-3.95) in living donation. In conclusion, the developed model shows the deleterious effect of clinically relevant DESAs on graft outcome which outperformed traditional DSA-based risk analysis on antigen level

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    Ranolazine Induced Bradycardia, Renal Failure, and Hyperkalemia: A BRASH Syndrome Variant

    No full text
    Ranolazine is a well-known antianginal drug, that was first licensed for use in the United States in 2006. It was objectively shown to improve exercise capacity and to lengthen the time to symptom onset in patients with coronary artery disease. The most commonly reported side effects of ranolazine include dizziness, headache, constipation, and nausea. Here, we describe a case of bradycardia, hyperkalemia, and acute renal injury in the setting of ranolazine use. Our patient is an 88-year-old female who presented with abdominal pain, nausea, and vomiting. Her medical comorbidities included hypertension, diabetes, CAD, heart failure with preserved ejection fraction, paroxysmal atrial fibrillation, hypothyroidism, and a history of cerebrovascular accident without any residual deficits. Her prescription regimen included amlodipine, furosemide, isosorbide mononitrate, levothyroxine, metformin, omeprazole, and ranolazine. Physical examination was remarkable for bradycardia and decreased breath sounds in the left lower lung field. Laboratory studies were significant for a serum potassium level of 6.8 mEq/L and a serum creatinine level of 1.6 mg/dL. She was given insulin with dextrose, sodium polystyrene, and calcium gluconate in addition to fluids. Her bradycardia and renal function worsened over the next 24 hours. Ranolazine was discontinued. Metabolic derangements were treated appropriately. After 48 hours from presentation, potassium and renal function returned to baseline and her heart rate improved to a range of 60–100 bpm. She was discharged with an outpatient cardiology follow-up. Ranolazine treatment was not continued upon discharge. In summary, our case illustrates an association between ranolazine and renal failure induced hyperkalemia, leading to conduction delays in the myocardium. Though further studies are warranted, we suspect that this is a variant of the recently described BRASH syndrome. We propose that in cases such as ours, along with treatment of the hyperkalemia, medication review and removal of any offending agent should be considered

    2771 Acute Gastric Dilatation: A Cause for Concern

    No full text
    corecore