9 research outputs found

    Community deworming alleviates geohelminth-induced immune hyporesponsiveness

    Get PDF
    In cross-sectional studies, chronic helminth infections have been associated with immunological hyporesponsiveness that can affect responses to unrelated antigens. To study the immunological effects of deworming, we conducted a cluster-randomized, double-blind, placebo-controlled trial in Indonesia and assigned 954 households to receive albendazole or placebo once every 3 mo for 2 y. Helminth-specific and nonspecific whole-blood cytokine responses were assessed in 1,059 subjects of all ages, whereas phenotyping of regulatory molecules was undertaken in 121 school-aged children. All measurements were performed before and at 9 and 21 mo after initiation of treatment. Anthelmintic treatment resulted in significant increases in proinflammatory cytokine responses to Plasmodium falciparum-infected red blood cells (PfRBCs) and mitogen, with the largest effect on TNF responses to PfRBCs at 9 mo—estimate [95% confidence interval], 0.37 [0.21–0.53], P value over time (Ptime) < 0.0001. Although the frequency of regulatory T cells did not change after treatment, there was a significant decline in the expression of the inhibitory molecule cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) on CD4+ T cells of albendazole-treated individuals, –0.060 [–0.107 to –0.013] and –0.057 [–0.105 to –0.008] at 9 and 21 mo, respectively; Ptime = 0.017. This trial shows the capacity of helminths to up-regulate inhibitory molecules and to suppress proinflammatory immune responses in humans. This could help to explain the inferior immunological responses to vaccines and lower prevalence of inflammatory diseases in low- compared with high-income countries

    The immunology of the allergy epidemic and the hygiene hypothesis

    No full text
    The immunology of the hygiene hypothesis of allergy is complex and involves the loss of cellular and humoral immunoregulatory pathways as a result of the adoption of a Western lifestyle and the disappearance of chronic infectious diseases. The influence of diet and reduced microbiome diversity now forms the foundation of scientific thinking on how the allergy epidemic occurred, although clear mechanistic insights into the process in humans are still lacking. Here we propose that barrier epithelial cells are heavily influenced by environmental factors and by microbiome-derived danger signals and metabolites, and thus act as important rheostats for immunoregulation, particularly during early postnatal development. Preventive strategies based on this new knowledge could exploit the diversity of the microbial world and the way humans react to it, and possibly restore old symbiotic relationships that have been lost in recent times, without causing disease or requiring a return to an unhygienic life style

    Vaccination against helminth parasite infections

    No full text
    Helminth parasites infect over one fourth of the human population and are highly prevalent in livestock worldwide. In model systems, parasites are strongly immunomodulatory, but the immune system can be driven to expel them by prior vaccination. However, no vaccines are currently available for human use. Recent advances in vaccination with recombinant helminth antigens have been successful against cestode infections of livestock and new vaccines are being tested against nematode parasites of animals. Numerous vaccine antigens are being defined for a wide range of helminth parasite species, but greater understanding is needed to define the mechanisms of vaccine-induced immunity, to lay a rational platform for new vaccines and their optimal design. With human trials underway for hookworm and schistosomiasis vaccines, a greater integration between veterinary and human studies will highlight the common molecular and mechanistic pathways, and accelerate progress towards reducing the global health burden of helminth infection

    Vaccination against helminth parasite infections

    No full text
    corecore