56 research outputs found

    Analysis of Long Noncoding RNAs in Aila-Induced Non-Small Cell Lung Cancer Inhibition

    Get PDF
    Non-small cell lung cancer (NSCLC) has the highest morbidity and mortality among all carcinomas. However, it is difficult to diagnose in the early stage, and current therapeutic efficacy is not ideal. Although numerous studies have revealed that Ailanthone (Aila), a natural product, can inhibit multiple cancers by reducing cell proliferation and invasion and inducing apoptosis, the mechanism by which Aila represses NSCLC progression in a time-dependent manner remains unclear. In this study, we observed that most long noncoding RNAs (lncRNAs) were either notably up- or downregulated in NSCLC cells after treatment with Aila. Moreover, alterations in lncRNA expression induced by Aila were crucial for the initiation and metastasis of NSCLC. Furthermore, in our research, expression of DUXAP8 was significantly downregulated in NSCLC cells after treatment with Aila and regulated expression levels of EGR1. In conclusion, our findings demonstrate that Aila is a potent natural suppressor of NSCLC by modulating expression of DUXAP8 and EGR1

    Atomistic dynamics of sulfur-deficient high-symmetry grain boundaries in molybdenum disulfide

    Get PDF
    As a common type of structural defect, grain boundaries (GBs) play an important role in tailoring the physical and chemical properties of bulk crystals and their two-dimensional (2D) counterparts such as graphene and molybdenum disulfide (MoS2). In this study, we explore the atomic structures and dynamics of three kinds of high-symmetry GBs (α, β and γ) in monolayer MoS2. Atomic-resolution transmission electron microscopy (TEM) is used to characterize their formation and evolutionary dynamics, and atomistic simulation based analysis explains the size distribution of α-type GBs observed under TEM and the inter-GB interaction, revealing the stabilization mechanism of GBs by pre-existing sulfur vacancies. The results elucidate the correlation between the observed GB dynamics and the migration of sulfur atoms across GBs via a vacancy-mediated mechanism, offering a new perspective for GB engineering in monolayer MoS2, which may be generalized to other transition metal dichalcogenides

    Reduction of Mitoferrin Results in Abnormal Development and Extended Lifespan in Caenorhabditis elegans

    Get PDF
    Iron is essential for organisms. It is mainly utilized in mitochondria for biosynthesis of iron-sulfur clusters, hemes and other cofactors. Mitoferrin 1 and mitoferrin 2, two homologues proteins belonging to the mitochondrial solute carrier family, are required for iron delivery into mitochondria. Mitoferrin 1 is highly expressed in developing erythrocytes which consume a large amount of iron during hemoglobinization. Mitoferrin 2 is ubiquitously expressed, whose functions are less known. Zebrafish with mitoferrin 1 mutation show profound hypochromic anaemia and erythroid maturation arrests, and yeast with defects in MRS3/4, the counterparts of mitoferrin 1/2, has low mitochondrial iron levels and grows poorly by iron depletion. Mitoferrin 1 expression is up-regulated in yeast and mouse models of Fiedreich's ataxia disease and in human cell culture models of Parkinson disease, suggesting its involvement in the pathogenesis of diseases with mitochondrial iron accumulation. In this study we found that reduced mitoferrin levels in C. elegans by RNAi treatment causes pleiotropic phenotypes such as small body size, reduced fecundity, slow movement and increased sensitivity to paraquat. Despite these abnormities, lifespan was increased by 50% to 80% in N2 wild type strain, and in further studies using the RNAi sensitive strain eri-1, more than doubled lifespan was observed. The pathways or mechanisms responsible for the lifespan extension and other phenotypes of mitoferrin RNAi worms are worth further study, which may contribute to our understanding of aging mechanisms and the pathogenesis of iron disorder related diseases

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Damped CAPES 2D Spectral Estimation for Real-Valued Vibration Signals

    No full text
    We propose a 2D representation in the frequency-decay factor plane of an arbitrary real-world vibration signal. The signal is expressed as the sum of a decayed-attenuation sine term modulated by an amplitude function and a noise residue. We extend the combined approach of Capon estimation and amplitude and phase estimation (CAPES) to damped real vibration signals (DR-CAPES). In the proposed DR-CAPES method, the high-resolution amplitude and phase are estimated simultaneously for both angular frequency and decay factor grids. The performance of the proposed approach is tested numerically with noisy vibration data. Results show that the DR-CAPES method has an excellent frequency resolution, which helps to overcome difficulties in spectrum estimation when vibration modes are very close, and a small bias, which makes it suitable for obtaining accurate amplitude spectrums. The results also indicate that the proposed method can accurately estimate the amplitude spectrum with the use of averaging and denoising processes

    Research on the Dynamic Characteristics of the Double Slings System with Elastic Connection Considering Boundary Conditions

    No full text
    As the length of single sling increases, double slings with transverse connections are gradually becoming one of the effective measures to control the undesirable vibration of single slings. In the analysis of the dynamic characteristics of the double sling system, this paper firstly deduces the dynamic stiffness matrix of the elastically connected double sling system by the dynamic stiffness method (DSM), solves the frequency equation evolved from the dynamic stiffness matrix by using the Wittrick-Williams (W-W) algorithm, and obtains the systematic analysis and calculation of the dynamic characteristics of the double sling system under arbitrary boundary conditions. Secondly, a complete and accurate analysis method of the dynamic characteristics of the double sling system is obtained by comprehensively considering the bending stiffness and boundary conditions of the sling, and the accuracy of the calculation can be verified by the actual measurement data. Finally, the best installation position and quantity of transverse sling clamps in the double sling system are obtained by the parametric analysis of transverse sling clamps. The analysis of this paper will provide a theoretical basis for the design and optimization of slings, and further promote the wide application of the double sling system

    Power Transformer’s Electrostatic Ring Optimization Based on ANSYS Parametric Design Language and Response Surface Methodology

    No full text
    In this paper, in view of the low efficiency of the traditional finite element method (FEM), which has been widely used in the insulation design of power transformers, the response surface methodology (RSM) is proposed to optimize the insulation structure of a power transformer electrostatic ring. Firstly, the power transformer model was built using the ANSYS parametric design language (APDL) to realize the automatic pre-processing of numerical calculation. Then with the objective of reducing the maximum electric field intensity, the Taguchi method was used to select the parameters that have a greater impact on the maximum electric field intensity, by which the subsequent optimization process could be effectively simplified. The test points were constructed by the central composite design (CCD) and a response surface model was established by the mutual calls of MATLAB and ANSYS. Finally, the variance analysis, diagnostic analysis, and significance test of regression were carried out to obtain the final response surface model. By comparing the result of RSM with that of FEM, we can find that the results obtained by the two methods are consistent and the maximum electric field strength is obviously reduced. The RSM is more systematic and convincing, which improves the optimization efficiency and provides a reliable and fast way for the optimization of power transformers
    • …
    corecore