8 research outputs found

    A web-based appointment system to reduce waiting for outpatients: A retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long waiting times for registration to see a doctor is problematic in China, especially in tertiary hospitals. To address this issue, a web-based appointment system was developed for the Xijing hospital. The aim of this study was to investigate the efficacy of the web-based appointment system in the registration service for outpatients.</p> <p>Methods</p> <p>Data from the web-based appointment system in Xijing hospital from January to December 2010 were collected using a stratified random sampling method, from which participants were randomly selected for a telephone interview asking for detailed information on using the system. Patients who registered through registration windows were randomly selected as a comparison group, and completed a questionnaire on-site.</p> <p>Results</p> <p>A total of 5641 patients using the online booking service were available for data analysis. Of them, 500 were randomly selected, and 369 (73.8%) completed a telephone interview. Of the 500 patients using the usual queuing method who were randomly selected for inclusion in the study, responses were obtained from 463, a response rate of 92.6%. Between the two registration methods, there were significant differences in age, degree of satisfaction, and total waiting time (<it>P </it>< 0.001). However, gender, urban residence, and valid waiting time showed no significant differences (<it>P </it>> 0.05). Being ignorant of online registration, not trusting the internet, and a lack of ability to use a computer were three main reasons given for not using the web-based appointment system. The overall proportion of non-attendance was 14.4% for those using the web-based appointment system, and the non-attendance rate was significantly different among different hospital departments, day of the week, and time of the day (<it>P </it>< 0.001).</p> <p>Conclusion</p> <p>Compared to the usual queuing method, the web-based appointment system could significantly increase patient's satisfaction with registration and reduce total waiting time effectively. However, further improvements are needed for broad use of the system.</p

    Unraveling the degradation mechanism for the hydrogen storage property of Fe nanocatalyst-modified MgH₂

    No full text
    Maintaining fast hydrogen storage kinetics is a key challenge for the practical application of MgH2. To address this challenge, understanding the mechanism of kinetics that declines during cycling is crucial but it has not been systematically investigated to date. In this paper, three different Fe nanocatalysts were synthesized and then doped into MgH2 to form new composites. The MgH2-Fe composite had significantly reduced operating temperatures and activation energy compared to that of undoped MgH2. During cycling, a capacity retention of 93.4% was obtained after the 20th cycle. For a better understanding of the declining performance, prolonged incubation was intentionally performed. Grain growth was found in MgH2 and the Fe nanocatalysts, which was directly responsible for capacity loss and kinetic degradation. These findings provide fundamental insights to facilitate designing and preparing catalytic hydrogen storage systems with superior cycling performance.Submitted/Accepted versionThe authors appreciatively acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51801078) and the Nature Science Foundation of Jiangsu Province (Grant No. BK202110884)

    Is there chiral correlation between graphitic layers in double-wall carbon nanotubes?

    No full text
    Because of the unique concentric structure, double-wall carbon nanotubes (DWNTs) possess fascinating properties which depend on the respective chirality of both the outer and the inner tubes. In this work, we study the chiral correlations of DWNTs synthesized by chemical vapor deposition on Fe nanoparticles. Contrary to some recent report, the distribution of chiral angle difference between inner and outer tubes in our work agrees with that calculated for all possible configurations. Remarkably, DWNTs with commensurate structures, i.e. outer and inner tubes have same chiral angles, are observed. The mechanism for the formation of DWNTs with approximately commensurate structures is discussed on the basis of layer by layer model. Furthermore, the interactional energies between the inner and outer walls are calculated to address the stability of different DWNT configurations. This work helps understand the growth mechanism of DWNTs and comprehend their structure stabilities with different configurations

    A robust CoxMg1-xO catalyst for predominantly growing (6,5) single-walled carbon nanotubes

    No full text
    Chirality-controlled growth of single-walled carbon nanotubes (SWCNTs) by chemical vapor deposition (CVD) is one of the most challenging tasks in carbon nanotube synthesis field. During CVD growth, the catalyst plays crucial roles in governing SWCNT nucleation thermodynamics as well as growth kinetics. However, the performances of catalyst are generally sensitive to the metal loading amount in the catalyst and the reaction conditions, like the partial pressure of carbon source and the reaction time. In this work, we have systematically investigated a robust CoxMg1-xO solid solution, which can predominantly yield (6, 5) SWCNTs in a wide range of Co concentration, with a diversity of CO concentrations or a broad-ranging reaction time. Besides, the effect of reaction temperature on SWCNT chirality distribution is demonstrated, the mechanism of which is clarified with the assistance of environmental transmission electron microscopy. Finally, the chirality distribution of SWCNTs grown using CH4 as the carbon source is presented. The effects of carbon sources are discussed in view of SWCNT growth mode. (C) 2019 Elsevier Ltd. All rights reserved
    corecore