101 research outputs found

    Hydrogenation of solid hydrogen cyanide HCN and methanimine CH2NH at low temperature

    No full text
    International audienceContext. Hydrogenation reactions dominate grain surface chemistry in dense molecular clouds and lead to the formation of complex saturated molecules in the interstellar medium. Aims. We investigate in the laboratory the hydrogenation reaction network of hydrogen cyanide HCN. Methods. Pure hydrogen cyanide HCN and methanimine CH2NH ices are bombarded at room temperature by H-atoms in an ultra-high vacuum experiment. Warm H-atoms are generated in an H2 plasma source. The ices are monitored with Fourier-transform infrared spectroscopy in reflection absorption mode. The hydrogenation products are detected in the gas phase by mass spectroscopy during temperature-programmed desorption experiments. Results. HCN hydrogenation leads to the formation of methylamine CH3NH2, and CH2NH hydrogenation leads to the formation of methylamine CH3NH2, suggesting that CH2NH can be a hydrogenation-intermediate species between HCN and CH3NH2. Conclusions. In cold environments the HCN hydrogenation reaction can produce CH3NH2, which is known to be a glycine precursor, and to destroy solid-state HCN, preventing its observation in molecular clouds ices

    Residue Analyses from the Heating of processed Interstellar Ice Analogues: understanding the formation of Solar System Organic Matter: RAHIIA_SSOM

    No full text
    Projet ANRComets and asteroids contain organic material formed very early in the Solar System history. The organic matter found in interplanetary objects may be related to interstellar icy grains present before the Solar System formation or during its formation, in the so-called proto-planetary disk. Organic matter then accretes on planetesimals and comet cores and may undergo hydrothermal alteration and reactions with minerals once water ice starts to melt. The effects of aqueous alteration of organic matter on interplanetary object remain poorly understood, blurring our current understanding of the nature of the accreted organic matter. This organic matter has been delivered on the surface of planets and could constitute a source of precursors for the emergence of life on the primitive Earth. The RAHIIA_SSOM project, thanks to a Laboratory Astrophysics approach developed in the interdisciplinary field of astrochemistry/astrobiology/cosmochemistry, addresses the origin and subsequent chemical evolution of the extraterrestrial organic matter: (1) during the Solar nebula epoch in ices, when subjected to irradiation and thermal alterations, (2) during the Solar System epoch in interplanetary objects, when submitted to hydrothermal or space weathering alterations. Our project relies on the multi-scale and multi-technique analyses of organic residues synthesized in the laboratory in conditions mimicking astrophysical environments. These analogues will be compared to the organic matter of interplanetary objects (comets, asteroids, meteorites, TNO). The comparison will constrain the physical and chemical evolution of interplanetary objects and thus, we will refine the scenario of the formation of their organic matter. The RAHIIA_SSOM project fits in the “Défi des autres savoirs” program of ANR. A key aspect of this project is interdisciplinary collaborations. Funding from ANR will offer a unique opportunity to build a French consortium implying research groups with worldwide expertise in either experimental simulations or characterization of extraterrestrial organics. Our consortium encompasses a wide range of analytical techniques on organic matter synthesised in laboratory in strong connection with extraterrestrial organics in interplanetary objects. It will shed light on new chemical, structural and isotopic information about reaction pathways involved in the evolution of organics from the interstellar medium to interplanetary objects, parent bodies of objects found on Earth (meteorites, micrometeorites) or directly collected by space probes and returned to Earth.Les comètes et les astéroïdes contiennent de la matière organique formée très tôt dans l'histoire du système solaire. La matière organique trouvée au sein des objets interplanétaires peut être liée à des grains de glace interstellaire présents avant la formation du système solaire ou pendant sa formation, à savoir le disque protoplanétaire. Par la suite, la matière organique s'accrète sous forme de planétésimaux et de noyaux cométaires et peut ensuite subir des altérations hydrothermales et des réactions avec des minéraux, une fois que la glace d'eau commence à fondre. Les effets de l'altération aqueuse sur cette matière organique au sein d'objets interplanétaires restent mal compris, rendant ainsi plus difficile notre compréhension actuelle de la nature de la matière organique pré-accrétionnelle. Cette matière organique a pu ensuite été délivrée à la surface de planètes, et pourrait constituer une source de précurseurs organiques pour l'émergence de la vie sur la Terre primitive. Le projet RAHIIA_SSOM, grâce à une approche "Astrophysique de Laboratoire" et interdisciplinaire liant l'astrochimie, l'astrobiologie et la cosmochimie, aborde l'origine et l'évolution chimique de la matière organique extraterrestre tout au long de la formation d'un système planétaire: (1) à l'époque de la nébuleuse solaire dans les glaces, lorsqu'elle est soumise à une irradiation et des modifications thermiques, (2) à l'époque du système solaire dans les objets interplanétaires, lorsqu'elle est soumise à des altérations hydrothermales ou des érosions spatiales. Notre projet repose sur l'analyse multi-échelles et multi-techniques de résidus organiques synthétisés en laboratoire dans des conditions mimant des environnements astrophysiques. Ces analogues seront comparés à la matière organique des objets interplanétaires (comètes, astéroïdes, météorites, TNO). Cette comparaison contraindra l'évolution physique et chimique des objets interplanétaires et permettra donc à terme d'affiner le scénario de formation de leur matière organique. Le projet RAHIIA_SSOM inscrit dans le programme «Défi des Autres savoirs" de l'ANR. Le financement de l'ANR offrira une occasion unique de construire un consortium français interdisciplinaire impliquant des groupes de recherche ayant une expertise dans le monde entier, concernant à la fois les simulations expérimentales ainsi que la caractérisation de la matières organiques extraterrestres. Notre consortium englobe un large éventail de techniques pour l'analyse de la matière organique synthétisée en laboratoire. Ces mêmes techniques seront utilisées pour l'analyse de la matière organique extraterrestre des objets naturels permettant ainsi de contraindre nos simulations expérimentales. Ce projet mettra en lumière de nouvelles informations structurelles et isotopiques sur les voies de réaction impliquées dans l'évolution de la matière organique du milieu interstellaire aux objets interplanétaires, corps parents d'objets trouvés sur la Terre (météorites, de micrométéorites) ou directement recueillies par les sondes spatiales pour des analyses in situ ou sur Terre par retour d'échantillons

    Volatile Analysis from the Heating of Interstellar Ice Analogs: VAHIIA

    No full text
    ANR VAHIIAThe challenges of this project consist in simulating through laboratory experiments, the chemical evolution of interstellar ices, and grains to understand the evolution of the organic matter during the life cycle of interstellar grains. Currently, our team is developing two complementary approaches to study this evolution. First, we are investigating the chemical reactivity that can occur within analogs of pristine or cometary ices, by working on small size systems (two or three reactants). Second, we are investigating the characterization of refractory residues formed during photolysis and warming of ice analogs without any degradation using an orbitrap apparatus. We propose to develop a new approach, which consists in implementing an analytical system for the Volatile Analyses coming from the Heating of Interstellar Ice Analogs, the VAHIIA project. This new device will help us to get a better understanding of the chemical reactions that lead to the formation of refractory residues. It will also give crucial information on species that would sublimate during the warming of cometary nucleus. This system will consist in coupling to an ultra-high vacuum cryogenic system, a gas chromatography including a mass spectrometer in order to analyze gas species sublimating during the heating of ice analogs. Therefore, the VAHIIA project will be the missing link between the two existing projects, and the whole will provide a comprehensive experimental approach aiming to trace the chemical history of such analogs by studying the reactivity of ice at low temperature, analyzing the volatile species sublimating during the warming, and characterizing the non-volatile residues resulting from the latter. The VAHIIA project has been already submitted in 2011. The scientific program of the 2012 application is quite the same that of the previous application. The major modifications are present in the description by tasks of this application, and in the request resources. We call such funding for the purchase of the GC-MS device, and for a two years recruitment of a post-doctor, which objectives will be to participate in GC-MS development and analysis. Furthermore, a detail reply to the “retour au coordinateur” is given in section 3 of the annex document

    Activation and energy transfers supporting potential peptide protometabolisms at the origin of living systems: PeptiSystems

    No full text
    ANR PeptiSystemLife on Earth constitutes a historical process that developed by complexification starting from chemicalsystems. It is considered in this project that physico-chemical driving forces and contingency are responsibleof this process since its early beginning. Theoretical aspects will constitute both the starting point of thisproject and a matter of investigation to contribute to a better understanding of the physical origin ofcomplexity. Within this perspective, the emergence of protometabolisms defined as networks of chemicalreactions proceeding under far from equilibrium conditions and involving nonlinear features and thereforebeing capable of generating self-organisation (associated with a local decrease in entropy compensated bythe irreversibility of the overall process) is a key step for the origin of life. Chemical networks of this kindmust work as unidirectional sequences of reactions or preferably as unidirectional reaction cycles in which afurther process of positive chemical feedback would be capable of generating systems endowed withautocatalytic properties and then behaving in a nonlinear way. Determining which pathways could haveconstantly or repeatedly fed these systems with energy to maintain the far from equilibrium state is thenessential to understand how self-organisation could emerge. This approach is applied to the formation ofbiopolymers capable of functional activities that is generally considered as a prerequisite for the origin oflife. Our original goal is to propose an overall scenario integrating the formation of peptides and other relatedprocesses to build a network capable of giving rise to emergent properties related to the connections of thedifferent parts of the network. The project is aimed at understanding how peptides could be formed underprebiotic conditions and how energy sources could have been coupled to peptide bond formation. But it isnot limited to this goal since random peptides made from racemic mixtures of amino acids are unlikely toadopt definite structures needed for specific activity so that it will address the question of the emergence ofselectivity (and stereoselectivity) or that of improbable but dynamically stable states. Lastly the emergenceof translation at an early stage of evolution suggests that the chemistry of amino acids and peptides can becoupled to that of an information carrier supporting the hypothesis of a peptide-nucleotide co-evolution. Allthese topics will be experimentally investigated by monitoring the reactions through common methods ofanalytical chemistry and organic chemistry (NMR, HPLC, MS, UV…)

    Multiple beam irradiation platform MIRRPLA: origin and evolution of organic matter in the solar system

    No full text
    International audience“Where do we come from?” is one of the important fascinating open questions of science andphilosophy. How did life emerge? What is the origin of organic matter in the universe? Couldlife also emerge on other worlds than our Earth? Complex organic molecules have indeed beenobserved in space (comets, meteorites, molecular clouds). In 2023, France launched theProgrammes et équipements prioritaires de recherche (PEPR) Origins (life and universe),through the program leader the National Centre for Scientific Research, to address thesequestions [1]. Understanding the origin of primitive organic matter during the formation andevolution of the solar system is fundamental because the contribution of extraterrestrial organicmatter via asteroids and comets is one of the possible sources of organic matter available toprimitive Earth [2]

    L’origine de la vie : quel apport de la chimie ?

    No full text

    L’origine de la vie : quel apport de la chimie ?

    No full text

    Des N-carboxyanhydrides d acides a-aminés (NCA) aux peptides (nouvelles réactions d intérêt prébiotique et applications)

    No full text
    MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF
    • …
    corecore