122 research outputs found

    High Physiological Omega-3 Fatty Acid Supplementation Affects Muscle Fatty Acid Composition and Glucose and Insulin Homeostasis in Obese Adolescents

    Get PDF
    Obese adolescents have high concentrations of saturated fatty acids and low omega-3 long-chain polyunsaturated fatty acids (LCUFAs) in plasma phospholipids. We aimed to investigate effects of omega-3 LCPUFA supplementation to obese adolescents on skeletal muscle lipids and glucose and insulin homeostasis. Twenty-five obese adolescents (14–17 years old, 14 females) completed a randomized double-blind crossover study supplying capsules containing either 1.2 g omega-3 LCPUFAs or placebo, for 3 months each with a six-week washout period. Fasting blood glucose, insulin, leptin, adiponectin, and lipids were measured. Intravenous glucose tolerance test (IVGTT) and euglycemic-hyperinsulinemic clamp were performed, and skeletal muscle biopsies were obtained at the end of each period. The concentrations of EPA, DHA, and total omega-3 PUFA in muscle phospholipids increased in both sexes. In the females, omega-3 LCPUFA supplementation improved glucose tolerance by 39% (P = 0.04) and restored insulin concentration by 34% (P = 0.02) during IVGTT. Insulin sensitivity improved 17% (P = 0.07). In males, none of these parameters was influenced by omega-3 supplementation. Thus, three months of supplementation of omega-3 LCPUFA improved glucose and insulin homeostasis in obese girls without influencing body weight

    Response to 'Does smoking or alcohol cause early vascular damage in teenage years?'

    Get PDF
    This commentary refers to ‘Early vascular damage from smoking and alcohol in teenage years: the ALSPAC study’, by M. Charakida et al., 345–353

    Intimal and medial arterial changes defined by ultra-high-frequency ultrasound: Response to changing risk factors in children with chronic kidney disease

    Get PDF
    BACKGROUND: Patients with chronic kidney disease (CKD) are exposed to both traditional 'Framingham' and uremia related cardiovascular risk factors that drive atherosclerotic and arteriosclerotic disease, but these cannot be differentiated using conventional ultrasound. We used ultra-high-frequency ultrasound (UHFUS) to differentiate medial thickness (MT) from intimal thickness (IT) in CKD patients, identify their determinants and monitor their progression. METHODS: Fifty-four children and adolescents with CKD and 12 healthy controls underwent UHFUS measurements using 55-70MHz transducers in common carotid and dorsal pedal arteries. Annual follow-up imaging was performed in 31 patients. RESULTS: CKD patients had higher carotid MT and dorsal pedal IT and MT compared to controls. The carotid MT in CKD correlated with serum phosphate (p<0.001, r = 0.42), PTH (p = 0.03, r = 0.36) and mean arterial pressure (p = 0.03, r = 0.34). Following multivariable analysis, being on dialysis, serum phosphate levels and mean arterial pressure remained the only independent predictors of carotid MT (R2 64%). Transplanted children had lower carotid and dorsal pedal MT compared to CKD and dialysis patients (p = 0.02 and p = 0.01 respectively). At 1-year follow-up, transplanted children had a decrease in carotid MT (p = 0.01), but an increase in dorsal pedal IT (p = 0.04) that independently correlated with annualized change in BMI. CONCLUSIONS: Using UHFUS, we have shown that CKD is associated with exclusively medial arterial changes that attenuate when the uremic milieu is ameliorated after transplantation. In contrast, after transplantation intimal disease develops as hypertension and obesity become prevalent, representing rapid vascular remodeling in response to a changing cardiovascular risk factor profile

    Determinants of intima-media thickness in the young: the ALSPAC Study

    Get PDF
    Objectives: This study characterized the determinants of carotid intima-media thickness (cIMT) in a large (n &gt; 4,000) longitudinal cohort of healthy young people age 9 to 21 years. Background: Greater cIMT is commonly used in the young as a marker of subclinical atherosclerosis, but its evolution at this age is still poorly understood. Methods: Associations between cardiovascular risk factors and cIMT were investigated in both longitudinal (ages 9 to 17 years) and cross-sectional (ages 17 and 21 years) analyses, with the latter also related to other measures of carotid structure and stress. Additional use of ultra-high frequency ultrasound in the radial artery at age 21 years allowed investigation of the distinct layers (i.e., intima or media) that may underlie observed differences. Results: Fat-free mass (FFM) and systolic blood pressure were the only modifiable risk factors positively associated with cIMT (e.g., mean difference in cIMT per 1-SD increase in FFM at age 17: 0.007 mm: 95% confidence interval [CI]: 0.004 to 0.010; p &lt; 0.001), whereas fat mass was negatively associated with cIMT (difference: −0.0032; 95% CI: 0.004 to −0.001; p = 0.001). Similar results were obtained when investigating cumulative exposure to these factors throughout adolescence. An increase in cIMT maintained circumferential wall stress in the face of increased mean arterial pressure when increases in body mass were attributable to increased FFM, but not fat mass. Risk factor−associated differences in the radial artery occurred in the media alone, and there was little evidence of a relationship between intimal thickness and any risk factor. Conclusions: Subtle changes in cIMT in the young may predominantly involve the media and represent physiological adaptations as opposed to subclinical atherosclerosis. Other vascular measures might be more appropriate for the identification of arterial disease before adulthood

    Early vascular damage from smoking and alcohol in teenage years:The ALSPAC study

    Get PDF
    AimsTo determine the impact of smoking and alcohol exposure during adolescence on arterial stiffness at 17 years.Methods and resultsSmoking and alcohol use were assessed by questionnaires at 13, 15, and 17 years in 1266 participants (425 males and 841 females) from the ALSPAC study. Smoking status (smokers and non-smoker) and intensity ('high' ≥100, 'moderate' 20-99, and 'low or never' 10 drinks on a typical drinking day)]. Carotid to femoral pulse wave velocity (PWV) was assessed at 17 years [mean ± standard deviation and/or mean difference (95% confidence intervals)]. Current smokers had higher PWV compared with non-smokers (P = 0.003). Higher smoking exposure was associated with higher PWV compared with non-smokers [5.81 ± 0.725 vs. 5.71 ± 0.677 m/s, mean adjusted difference 0.211 (0.087-0.334) m/s, P = 0.001]. Participants who stopped smoking had similar PWV to never smokers (P = 0.160). High-intensity drinkers had increased PWV [HI 5.85 ± 0.8 vs. LI 5.67 ± 0.604 m/s, mean adjusted difference 0.266 (0.055-0.476) m/s, P = 0.013]. There was an additive effect of smoking intensity and alcohol intensity, so that 'high' smokers who were also HI drinkers had higher PWV compared with never-smokers and LI drinkers [mean adjusted increase 0.603 (0.229-0.978) m/s, P = 0.002].ConclusionSmoking exposure even at low levels and intensity of alcohol use were associated individually and together with increased arterial stiffness. Public health strategies need to prevent adoption of these habits in adolescence to preserve or restore arterial health

    Lipid modulation of skeletal muscle mass and function

    Get PDF
    Loss of skeletal muscle mass is a characteristic feature of various pathologies including cancer, diabetes, and obesity, as well as being a general feature of ageing. However, the processes underlying its pathogenesis are not fully understood and may involve multiple factors. Importantly, there is growing evidence which supports a role for fatty acids and their derived lipid intermediates in the regulation of skeletal muscle mass and function. In this review, we discuss evidence pertaining to those pathways which are involved in the reduction, increase and/or preservation of skeletal muscle mass by such lipids under various pathological conditions, and highlight studies investigating how these processes may be influenced by dietary supplementation as well as genetic and/or pharmacological intervention
    corecore