8,921 research outputs found

    Analysis of parametric biological models with non-linear dynamics

    Full text link
    In this paper we present recent results on parametric analysis of biological models. The underlying method is based on the algorithms for computing trajectory sets of hybrid systems with polynomial dynamics. The method is then applied to two case studies of biological systems: one is a cardiac cell model for studying the conditions for cardiac abnormalities, and the second is a model of insect nest-site choice.Comment: In Proceedings HSB 2012, arXiv:1208.315

    Remediation of Expansive Soils Using Agricultural Waste Bagasse Ash

    Get PDF
    © 2016 The Authors. Published by Elsevier B.V. Bagasse is a fibrous material remaining after crushing sugarcane to extract its juice; and bagasse ash is produced after burning bagasse. Improper disposal of this material can create environmental problems around sugar manufacturing plants. Bagasse ash, comprising a high percentage of silica (SiO2), is considered as a sensible pozzolanic material with non-reactive behaviour and has potential to be used in road subgrade stabilisation. One of the main challenges for transportation organisations in Australia is to treat subgrades including expansive soils. Expansive soils exhibit significant movements when the moisture content changes, and hence it causes substantial damage to road pavements constructed over these type of soils. Road engineers need to employ materials having acceptable strength, relatively low price and being eco-friendly. In order to demonstrate the potential ability of bagasse ash in curtailing the adverse effects of expansive soils on roads, an array of experimental tests using bagasse ash have been conducted. In this study to activate and improve the effectiveness of bagasse ash, hydrated lime was used and mixed with black soil samples, collected from Queensland Australia. Samples were prepared using different contents of bagasse ash and hydrated lime (0%, 6%, 10%, 18% and 25% by the dry mass of soil), at a ratio of 3:1, respectively. The results of free swell ratio (FSR) test, unconfined compression strength (UCS) and California bearing ratio (CBR) tests are presented for untreated and treated samples after various curing time periods of 3, 7 and 28 days. The outcomes of these tests clearly demonstrate that stabilisation of expansive soils using bagasse ash and hydrated lime not only improves the strength, but also facilitates to cope with environmental concerns through reduction of sugar industry waste material

    Synchronized and Desynchronized Phases of Exciton-Polariton Condensates in the Presence of Disorder

    Get PDF
    Condensation of exciton-polaritons in semiconductor microcavities takes place despite in plane disorder. Below the critical density the inhomogeneity of the potential seen by the polaritons strongly limits the spatial extension of the ground state. Above the critical density, in presence of weak disorder, this limitation is spontaneously overcome by the non linear interaction, resulting in an extended synchronized phase. This mechanism is clearly evidenced by spatial and spectral studies, coupled to interferometric measurements. In case of strong disorder, several non phase-locked (independent) condensates can be evidenced. The transition from synchronized phase to desynchronized phase is addressed considering multiple realizations of the disorder.Comment: 11 pages, 4 figures,corrected typos, added figure

    InAs/GaAs Quantum-Dot Lasers Monolithically Grown on on-axis Silicon (001)

    Get PDF
    Inversion boundaries (IBs) are charged planer defects that arise from the growth of polar III-V materials on non-polar Si (001) substrate. This paper demonstrates a novel technique to achieve all-MBE grown, IB-free GaAs on on-axis Si (001) substrates by employing periodic Si single-atomicheight steps to re-distribute the nucleation of IBs and promote IB self-annihilation in the subsequent GaAs growth. Furthermore, an electronically pumped quantum-dot (QD) laser has been demonstrated on this IB-free GaAs/Si platform with a maximum operating temperature of 120 °C. These results could be a significant step towards the monolithic integration of III-V materials and devices with mature CMOS technology

    Comparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane

    No full text
    One of the significant uncertainties in understanding the effects of aviation on climate is the effects of aviation emissions on ozone and atmospheric chemistry. In this study the effects of aviation emissions on atmospheric ozone for 2006 and two projections for 2050 are compared among seven models. The models range in complexity from a two-dimensional coupled model to three-dimensional offline and fully coupled three-dimensional chemistry-climate models. This study is the first step in a critical assessment and comparison among these model results. Changes in tropospheric O3 burdens range from 2.3 Tg-O3/Tg-N to 3.0 Tg-O3/Tg-N, ozone radiative forcings range from 6 to 37 mW/m2, and methane radiative forcings range from -8.3 to -12.5 mW/m2 for the 2006 aviation emissions. As a group, the chemistry transport models tend to have similar responses while the fully coupled models tend to separate from this group and do not show similar responses to each other. ©2013. American Geophysical Union. All Rights Reserved
    • …
    corecore