49 research outputs found

    Novel Mechanism of Supersolid of Ultracold Polar Molecules in Optical Lattices

    Full text link
    We study the checkerboard supersolid of the hard-core Bose-Hubbard model with the dipole-dipole interaction. This supersolid is different from all other supersolids found in lattice models in the sense that superflow paths through which interstitials or vacancies can hop freely are absent in the crystal. By focusing on repulsive interactions between interstitials, we reveal that the long-range tail of the dipole-dipole interaction have the role of increasing the energy cost of domain wall formations. This effect produces the supersolid by the second-order hopping process of defects. We also perform exact quantum Monte Carlo simulations and observe a novel double peak structure in the momentum distribution of bosons, which is a clear evidence for supersolid. This can be measured by the time-of-flight experiment in optical lattice systems

    Condensed Matter Theory of Dipolar Quantum Gases

    Full text link
    Recent experimental breakthroughs in trapping, cooling and controlling ultracold gases of polar molecules, magnetic and Rydberg atoms have paved the way toward the investigation of highly tunable quantum systems, where anisotropic, long-range dipolar interactions play a prominent role at the many-body level. In this article we review recent theoretical studies concerning the physics of such systems. Starting from a general discussion on interaction design techniques and microscopic Hamiltonians, we provide a summary of recent work focused on many-body properties of dipolar systems, including: weakly interacting Bose gases, weakly interacting Fermi gases, multilayer systems, strongly interacting dipolar gases and dipolar gases in 1D and quasi-1D geometries. Within each of these topics, purely dipolar effects and connections with experimental realizations are emphasized.Comment: Review article; submitted 09/06/2011. 158 pages, 52 figures. This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Chemical Reviews, copyright American Chemical Society after peer review. To access the final edited and published work, a link will be provided soo

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Image Classification-Based Defect Detection of Railway Tracks Using Fiber Bragg Grating Ultrasonic Sensors

    No full text
    Structural health monitoring (SHM) is vital to the maintenance of civil infrastructures. For rail transit systems, early defect detection of rail tracks can effectively prevent the occurrence of severe accidents like derailment. Non-destructive testing (NDT) has been implemented in railway online and offline monitoring systems using state-of-the-art sensing technologies. Data-driven methodologies, especially machine learning, have contributed significantly to modern NDT approaches. In this paper, an efficient and robust image classification model is proposed to achieve railway status identification using ultrasonic guided waves (UGWs). Experimental studies are conducted using a hybrid sensing system consisting of a lead–zirconate–titanate (PZT) actuator and fiber Bragg grating (FBG) sensors. Comparative studies have been firstly carried out to evaluate the performance of the UGW signals obtained by FBG sensors and high-resolution acoustic emission (AE) sensors. Three different rail web conditions are considered in this research, where the rail is: (1) intact without any defect; (2) damaged with an artificial crack; and (3) damaged with a bump on the surface made of blu-tack adhesives. The signals acquired by FBG sensors and AE sensors are compared in time and frequency domains. Then the research focuses on damage detection using a convolutional neural network (CNN) with the input of RGB spectrum images of the UGW signals acquired by FBG sensors, which are calculated using Short-time Fourier Transform (STFT). The proposed image classifier achieves high accuracy in predicting each railway condition. The visualization of the classifier indicates the high efficiency of the proposed paradigm, revealing the potential of the method to be applied to mass railway monitoring systems in the future

    Expression Profile and Prognostic Value of Wnt Signaling Pathway Molecules in Colorectal Cancer

    No full text
    Colorectal cancer (CRC) is a heterogeneous disease with changes in the genetic and epigenetic levels of various genes. The molecular assessment of CRC is gaining increasing attention, and furthermore, there is an increase in biomarker use for disease prognostication. Therefore, the identification of different gene biomarkers through messenger RNA (mRNA) abundance levels may be useful for capturing the complex effects of CRC. In this study, we demonstrate that the high mRNA levels of 10 upregulated genes (DPEP1, KRT80, FABP6, NKD2, FOXQ1, CEMIP, ETV4, TESC, FUT1, and GAS2) are observed in CRC cell lines and public CRC datasets. Moreover, we find that a high mRNA expression of DPEP1, NKD2, CEMIP, ETV4, TESC, or FUT1 is significantly correlated with a worse prognosis in CRC patients. Further investigation reveals that CTNNB1 is the key factor in the interaction of the canonical Wnt signaling pathway with 10 upregulated CRC-associated genes. In particular, we identify NKD2, FOXQ1, and CEMIP as three CTNNB1-regulated genes. Moreover, individual inhibition of the expression of three CTNNB1-regulated genes can cause the growth inhibition of CRC cells. This study reveals efficient biomarkers for the prognosis of CRC and provides a new molecular interaction network for CRC

    DataSheet1_Obesity Metabolic Phenotype, Changes in Time and Risk of Diabetes Mellitus in an Observational Prospective Study on General Population.docx

    No full text
    Objectives: To evaluate the distribution and changes in different obesity metabolic phenotypes, as well as their impact on the incidence of type 2 diabetes mellitus (T2DM) in a northwest Chinese population sample.Methods: Data comes from prospective cohort study (n = 1,393, mean follow up = 9.46 years). Participants were classified into four groups through a combination of the Chinese Diabetes Society (CDS) diagnostic criteria for metabolic syndrome with anthropometric measurements: metabolically healthy normal weight (MHNW), metabolically healthy overweight/obese (MHO), metabolically unhealthy normal weight (MUNW), and metabolically unhealthy overweight/obese (MUO). Cox regression models with time-dependent covariates were used to evaluate changes in obesity metabolic phenotypes and risk of T2DM.Results: Participants in MUO state had the highest risk of developing T2DM, the incidence density was 12.10/1,000 person-year. The MHO and MUO groups showed an increased risk of incident diabetes based on body mass index (BMI) (HR, 1.29; 95% CI, 1.03–1.61; p = 0.026 and HR, 1.20; 95% CI, 1.02–1.40; p = 0.024 respectively.) Besides, the MHO group had an increased risk of incident diabetes based on waist circumference (WC) (HR, 1.41; 95% CI, 1.10–1.80; p = 0.006).Conclusion: Diabetes is more frequent in the MHO and MUO groups and co-occurrence of obesity and metabolic abnormalities (MA) contributes to the development of T2DM.</p

    Novel Insights into the Prognosis and Immunological Value of the SLC35A (Solute Carrier 35A) Family Genes in Human Breast Cancer

    No full text
    According to statistics 2020, female breast cancer (BRCA) became the most commonly diagnosed malignancy worldwide. Prognosis of BRCA patients is still poor, especially in population with advanced or metastatic. Particular functions of each members of the solute carrier 35A (SLC35A) gene family in human BRCA are still unknown regardless of awareness that they play critical roles in tumorigenesis and progression. Using integrated bioinformatics analyses to identify therapeutic targets for specific cancers based on transcriptomics, proteomics, and high-throughput sequencing, we obtained new information and a better understanding of potential underlying molecular mechanisms. Leveraging BRCA dataset that belongs to The Cancer Genome Atlas (TCGA), which were employed to clarify SLC35A gene expression levels. Then we used a bioinformatics approach to investigate biological processes connected to SLC35A family genes in BRCA development. Beside that, the Kaplan&ndash;Meier estimator was leveraged to explore predictive values of SLC35A family genes in BCRA patients. Among individuals of this family gene, expression levels of SLC35A2 were substantially related to poor prognostic values, result from a hazard ratio of 1.3 (with 95 percent confidence interval (95% CI: 1.18&ndash;1.44), the p for trend (ptrend) is 3.1 &times; 10&minus;7). Furthermore, a functional enrichment analysis showed that SLC35A2 was correlated with hypoxia-inducible factor 1A (HIF1A), heat shock protein (HSP), E2 transcription factor (E2F), DNA damage, and cell cycle-related signaling. Infiltration levels observed in specific types of immune cell, especially the cluster of differentiation found on macrophages and neutrophils, were positively linked with SLC35A2 expression in multiple BRCA subclasses (luminal A, luminal B, basal, and human epidermal growth factor receptor 2). Collectively, SLC35A2 expression was associated with a lower recurrence-free survival rate, suggesting that it could be used as a biomarker in treating BRCA
    corecore