18 research outputs found

    A large topographic feature on the surface of the trans-Neptunian object (307261) 2002 MS4_4 measured from stellar occultations

    Full text link
    This work aims at constraining the size, shape, and geometric albedo of the dwarf planet candidate 2002 MS4 through the analysis of nine stellar occultation events. Using multichord detection, we also studied the object's topography by analyzing the obtained limb and the residuals between observed chords and the best-fitted ellipse. We predicted and organized the observational campaigns of nine stellar occultations by 2002 MS4 between 2019 and 2022, resulting in two single-chord events, four double-chord detections, and three events with three to up to sixty-one positive chords. Using 13 selected chords from the 8 August 2020 event, we determined the global elliptical limb of 2002 MS4. The best-fitted ellipse, combined with the object's rotational information from the literature, constrains the object's size, shape, and albedo. Additionally, we developed a new method to characterize topography features on the object's limb. The global limb has a semi-major axis of 412 ±\pm 10 km, a semi-minor axis of 385 ±\pm 17 km, and the position angle of the minor axis is 121 ^\circ ±\pm 16^\circ. From this instantaneous limb, we obtained 2002 MS4's geometric albedo and the projected area-equivalent diameter. Significant deviations from the fitted ellipse in the northernmost limb are detected from multiple sites highlighting three distinct topographic features: one 11 km depth depression followed by a 255+4^{+4}_{-5} km height elevation next to a crater-like depression with an extension of 322 ±\pm 39 km and 45.1 ±\pm 1.5 km deep. Our results present an object that is \approx138 km smaller in diameter than derived from thermal data, possibly indicating the presence of a so-far unknown satellite. However, within the error bars, the geometric albedo in the V-band agrees with the results published in the literature, even with the radiometric-derived albedo

    Physical properties of the trans-Neptunian object (38628) Huya from a multi-chord stellar occultation

    Full text link
    Within our international program to obtain accurate physical properties of trans-Neptunian objects (TNOs) we predicted a stellar occultation by the TNO (38628) Huya of the star Gaia DR2 4352760586390566400 (mG = 11.5 mag.) for March 18, 2019. After an extensive observational campaign, we updated the prediction and it turned out to be favorable to central Europe. Therefore, we mobilized half a hundred professional and amateur astronomers, and the occultation was finally detected from 21 telescopes located at 18 sites. This makes the Huya event one of the best ever observed stellar occultation by a TNO in terms of the number of chords. We determine accurate size, shape, and geometric albedo, and we also provide constraints on the density and other internal properties of this TNO. The 21 positive detections of the occultation by Huya allowed us to obtain well-separated chords which permitted us to fit an ellipse for the limb of the body at the moment of the occultation (i.e., the instantaneous limb) with kilometric accuracy. The projected semi-major and minor axes of the best ellipse fit obtained using the occultation data are (a', b') = (217.6 ±\pm 3.5 km, 194.1 ±\pm 6.1 km) with a position angle of the minor axis P' = 55.2 ±\pm 9.1 degrees. From this fit, the projected area-equivalent diameter is 411.0 ±\pm 7.3 km. This diameter is compatible with the equivalent diameter for Huya obtained from radiometric techniques (D = 406 ±\pm 16 km). From this instantaneous limb, we obtained the geometric albedo for Huya (pV\rm_V = 0.079 ±\pm 0.004) and we explored possible 3D shapes and constraints to the mass density for this TNO. We did not detect the satellite of Huya through this occultation, but the presence of rings or debris around Huya is constrained using the occultation data. We also derived an upper limit for a putative Pluto-like global atmosphere of about psurf_{\rm surf} = 10 nbar.Comment: Accepted for publication in Astronomy & Astrophysics (30-April-2022). 19 pages, 7 figure
    corecore