173 research outputs found

    Arterial input function and gray matter cerebral blood volume measurements in children

    Get PDF
    Purpose To investigate how arterial input functions (AIFs) vary with age in children and compare the use of individual and population AIFs for calculating gray matter CBV values. Quantitative measures of cerebral blood volume (CBV) using dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) require measurement of an AIF. AIFs are affected by numerous factors including patient age. Few data presenting AIFs in the pediatric population exists. Materials and Methods Twenty‐two previously treated pediatric brain tumor patients (mean age, 6.3 years; range, 2.0–15.3 years) underwent DSC‐MRI scans on a 3T MRI scanner over 36 visits. AIFs were measured in the middle cerebral artery. A functional form of an adult population AIF was fitted to each AIF to obtain parameters reflecting AIF shape. The relationship between parameters and age was assessed. Correlations between gray matter CBV values calculated using the resulting population and individual patient AIFs were explored. Results There was a large variation in individual patient AIFs but correlations between AIF shape and age were observed. The center (r = 0.596, P < 0.001) and width of the first‐pass peak (r = 0.441, P = 0.007) were found to correlate significantly with age. Intrapatient coefficients of variation were significantly lower than interpatient values for all parameters (P < 0.001). Differences in CBV values calculated with an overall population and age‐specific population AIF compared to those calculated with individual AIFs were 31.3% and 31.0%, respectively. Conclusion Parameters describing AIF shape correlate with patient age in line with expected changes in cardiac output. In pediatric DSC‐MRI studies individual patient AIFs are recommended

    1281O Atezolizumab (atezo) vs platinum-based chemo in blood-based tumour mutational burden-positive (bTMB+) patients (pts) with first-line (1L) advanced/metastatic (m)NSCLC: Results of the Blood First Assay Screening Trial (BFAST) phase III cohort C

    Get PDF
    Background: TMB is a promising biomarker for immunotherapy in NSCLC, but current data are mostly retrospective. As not all pts may have sufficient tissue for comprehensive biomarker testing, bTMB was prospectively tested as a novel biomarker using targeted next-generation sequencing. BFAST (NCT03178552), a global, open-label, multi-cohort trial, evaluated safety and efficacy of targeted therapies or immunotherapy in biomarker-selected pts with unresectable mNSCLC. Here we present results from Cohort C of 1L atezo vs platinum-based chemo in pts with bTMB+ mNSCLC. Methods: We planned to randomise ≈440 pts with 1L mNSCLC with measurable disease per RECIST 1.1 and bTMB ≥10 (9.1 mut/Mb; FMI bTMB assay) 1:1 to atezo 1200 mg IV every 3 weeks or chemo and stratified by tissue availability, ECOG PS, bTMB and histology. The primary endpoint was INV-PFS per RECIST 1.1 in bTMB ≥16 (14.5 mut/Mb) pts. Key secondary endpoints included OS in bTMB ≥10 (intent to treat, ITT) and bTMB ≥16 pts, and INV-PFS in ITT pts. Results: 471 pts were assigned to atezo (n=234) or chemo (n=237). At baseline, 72% had non-squamous histology, 2% never smoked and median SLD was 103 mm. 145 pts with bTMB ≥16 were assigned to atezo and 146 to chemo. At data cutoff (21 May 2020) minimum follow up was 6 mo. INV-PFS difference in bTMB ≥16 pts for atezo vs chemo was not significant (P=0.053; Table). Grade 3-4 TRAEs occurred in 18% (atezo) vs 46% (chemo) of pts. Serious TRAEs occurred in 12% (atezo) vs 14% (chemo). Results at other bTMB thresholds and by F1L CDx will also be presented as an exploratory analysis. Conclusions: The primary PFS endpoint in bTMB ≥16 pts was not met. OS was numerically better with atezo vs chemo but the difference was not statistically significant. The safety profile of atezo vs chemo was favourable and consistent with atezo monotherapy across indications

    Improved Leakage Correction for Single-Echo Dynamic Susceptibility Contrast Perfusion MRI Estimates of Relative Cerebral Blood Volume in High-Grade Gliomas by Accounting for Bidirectional Contrast Agent Exchange

    Full text link
    Background and purposeContrast agent extravasation through a disrupted blood-brain barrier potentiates inaccurate DSC MR imaging estimation of relative CBV. We explored whether incorporation of an interstitial washout rate in a leakage-correction model for single-echo, gradient-echo DSC MR imaging improves relative CBV estimates in high-grade gliomas.Materials and methodsWe modified the traditional model-based postprocessing leakage-correction algorithm, assuming unidirectional contrast agent extravasation (Boxerman-Weisskoff model) to account for bidirectional contrast agent exchange between intra- and extravascular spaces (bidirectional model). For both models, we compared the goodness of fit with the parent leakage-contaminated relaxation rate curves by using the Akaike Information Criterion and the difference between modeled interstitial relaxation rate curves and dynamic contrast-enhanced MR imaging by using Euclidean distance in 21 patients with glioblastoma multiforme.ResultsThe bidirectional model had improved Akaike Information Criterion versus the bidirectional model in &gt;50% of enhancing tumor voxels in all 21 glioblastoma multiformes (77% ± 9%; P &lt; .0001) and had reduced the Euclidean distance in &gt;50% of enhancing tumor voxels for 17/21 glioblastoma multiformes (62% ± 17%; P = .0041). The bidirectional model and dynamic contrast-enhanced-derived kep demonstrated a strong correlation (r = 0.74 ± 0.13). On average, enhancing tumor relative CBV for the Boxerman-Weisskoff model exceeded that for the bidirectional model by 16.6% ± 14.0%.ConclusionsInclusion of the bidirectional exchange in leakage-correction models for single-echo DSC MR imaging improves the model fit to leakage-contaminated DSC MR imaging data and significantly improves the estimation of relative CBV in high-grade gliomas

    The relationship between organisational characteristics and the effects of clinical guidelines on medical performance in hospitals, a meta-analysis

    Get PDF
    We are grateful to our colleagues involved in the systematic review of guideline dissemination and implementation strategies across all settings especially Cynthia Fraser, Graeme MacLennan, Craig Ramsay, Paula Whitty, Martin Eccles, Lloyd Matowe, Liz Shirran. The systematic review of guideline dissemination and implementation strategies across all settings was funded by the UK NHS Health Technology Assessment Program. Dr Ruth Thomas is funded by a Wellcome Training Fellowship in Health Services Research. (Grant number GR063790MA). The Health Services Research Unit is funded by the Chief Scientists Office of the Scottish Executive Department of Health. Dr Jeremy Grimshaw holds a Canada Research Chair in Health Knowledge Transfer and Uptake. However the views expressed are those of the authors and not necessarily the funders.Peer reviewedPublisher PD
    corecore