5 research outputs found

    Supramolecular Assembly of Aminoethylene‐Lipopeptide PMO Conjugates into RNA Splice‐Switching Nanomicelles

    Get PDF
    Phosphorodiamidate morpholino oligomers (PMOs) are oligonucleotide analogs that can be used for therapeutic modulation of pre‐mRNA splicing. Similar to other classes of nucleic acid‐based therapeutics, PMOs require delivery systems for efficient transport to the intracellular target sites. Here, artificial peptides based on the oligo(ethylenamino) acid succinyl‐tetraethylenpentamine (Stp), hydrophobic modifications, and an azide group are presented, which are used for strain‐promoted azide‐alkyne cycloaddition conjugation with splice‐switching PMOs. By systematically varying the lead structure and formulation, it is determined that the type of contained fatty acid and supramolecular assembly have a critical impact on the delivery efficacy. A compound containing linolenic acid with three cis double bonds exhibits the highest splice‐switching activity and significantly increases functional protein expression in pLuc/705 reporter cells in vitro and after local administration in vivo. Structural and mechanistic studies reveal that the lipopeptide PMO conjugates form nanoparticles, which accelerate cellular uptake and that the content of unsaturated fatty acids enhances endosomal escape. In an in vitro Duchenne muscular dystrophy exon skipping model using H2K‐mdx52 dystrophic skeletal myotubes, the highly potent PMO conjugates mediate significant splice‐switching at very low nanomolar concentrations. The presented aminoethylene‐lipopeptides are thus a promising platform for the generation of PMO‐therapeutics with a favorable activity/toxicity profile

    Dodecaborate-Functionalized Anchor Dyes for Cyclodextrin-Based Indicator Displacement Applications

    No full text
    A new type of water-soluble anchor dyes, that is, dyes which carry an auxiliary unit for strong binding to macrocyclic host molecules, has been synthesized. It consists of 7-nitrobenzofurazan (NBD) as a dye and the dodecaborate cluster (B<sub>12</sub>H<sub>11</sub>R) as a dianionic, globular, and purely inorganic anchoring group for cyclodextrins (<i>K</i><sub>a</sub> > 10<sup>5</sup> M<sup>–1</sup>). The synthesized dodecaborate-substituted dyes show marked changes in their photophysical properties (UV–vis and fluorescence) upon complexation with cyclodextrins (ÎČ-CD and Îł-CD), such that the resulting host·dye complexes (1:1 stoichiometry) present sensitive reporter pairs for indicator displacement applications

    Coordinative Binding of Polymers to Metal–Organic Framework Nanoparticles for Control of Interactions at the Biointerface

    No full text
    Metal–organic framework nanoparticles (MOF NPs) are of growing interest in diagnostic and therapeutic applications, and due to their hybrid nature, they display enhanced properties compared to more established nanomaterials. The effective application of MOF NPs, however, is often hampered by limited control of their surface chemistry and understanding of their interactions at the biointerface. Using a surface coating approach, we found that coordinative polymer binding to Zr-fum NPs is a convenient way for peripheral surface functionalization. Different polymers with biomedical relevance were assessed for the ability to bind to the MOF surface. Carboxylic acid and amine containing polymers turned out to be potent surface coatings and a modulator replacement reaction was identified as the underlying mechanism. The strong binding of polycarboxylates was then used to shield the MOF surface with a double amphiphilic polyglutamate–polysarcosine block copolymer, which resulted in an exceptional high colloidal stability of the nanoparticles. The effect of polymer coating on interactions at the biointerface was tested with regard to cellular association and protein binding, which has, to the best of our knowledge, never been discussed in literature for functionalized MOF NPs. We conclude that the applied approach enables a high degree of chemical surface confinement, which could be used as a universal strategy for MOF NP functionalization. In this way, the physicochemical properties of MOF NPs could be tuned, which allows for control over their behavior in biological systems
    corecore