167 research outputs found

    Setting the Pace: New Insights into Central Pattern Generator Interactions in Box Jellyfish Swimming

    Get PDF
    Central Pattern Generators (CPGs) produce rhythmic behaviour across all animal phyla. Cnidarians, which have a radially symmetric nervous system and pacemaker centres in multiples of four, provide an interesting comparison to bilaterian animals for studying the coordination between CPGs. The box jellyfish Tripedalia cystophora is remarkable among cnidarians due to its most elaborate visual system. Together with their ability to actively swim and steer, they use their visual system for multiple types of behaviour. The four swim CPGs are directly regulated by visual input. In this study, we addressed the question of how the four pacemaker centres of this radial symmetric cnidarian interact. We based our investigation on high speed camera observations of the timing of swim pulses of tethered animals (Tripedalia cystophora) with one or four rhopalia, under different simple light regimes. Additionally, we developed a numerical model of pacemaker interactions based on the inter pulse interval distribution of animals with one rhopalium. We showed that the model with fully resetting coupling and hyperpolarization of the pacemaker potential below baseline fitted the experimental data best. Moreover, the model of four swim pacemakers alone underscored the proportion of long inter pulse intervals (IPIs) considerably. Both in terms of the long IPIs as well as the overall swim pulse distribution, the simulation of two CPGs provided a better fit than that of four. We therefore suggest additional sources of pacemaker control than just visual input. We provide guidelines for future research on the physiological linkage of the cubozoan CPGs and show the insight from bilaterian CPG research, which show that pacemakers have to be studied in their bodily and nervous environment to capture all their functional features, are also manifest in cnidarians

    The giant eyes of giant squid are indeed unexpectedly large, but not if used for spotting sperm whales

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Evolutionary Biology 13 (2013): 187, doi:10.1186/1471-2148-13-187.We recently reported (Curr Biol 22:683–688, 2012) that the eyes of giant and colossal squid can grow to three times the diameter of the eyes of any other animal, including large fishes and whales. As an explanation to this extreme absolute eye size, we developed a theory for visual performance in aquatic habitats, leading to the conclusion that the huge eyes of giant and colossal squid are uniquely suited for detection of sperm whales, which are important squid-predators in the depths where these squid live. A paper in this journal by Schmitz et al. (BMC Evol Biol 13:45, 2013) refutes our conclusions on the basis of two claims: (1) using allometric data they argue that the eyes of giant and colossal squid are not unexpectedly large for the size of the squid, and (2) a revision of the values used for modelling indicates that large eyes are not better for detection of approaching sperm whales than they are for any other task. We agree with Schmitz et al. that their revised values for intensity and abundance of planktonic bioluminescence may be more realistic, or at least more appropriately conservative, but argue that their conclusions are incorrect because they have not considered some of the main arguments put forward in our paper. We also present new modelling to demonstrate that our conclusions remain robust, even with the revised input values suggested by Schmitz et al

    Zebrafish differentially process colour across visual space to match natural scenes

    Get PDF
    Animal eyes have evolved to process behaviourally important visual information, but how retinas deal with statistical asymmetries in visual space remains poorly understood. Using hyperspectral imaging in the field, in-vivo 2-photon imaging of retinal neurons and anatomy, here we show that larval zebrafish use a highly anisotropic retina to asymmetrically survey their natural visual world. First, different neurons dominate different parts of the eye, and are linked to a systematic shift in inner retinal function: Above the animal, there is little colour in nature and retinal circuits are largely achromatic. Conversely, the lower visual field and horizon are colour-rich and are predominately surveyed by chromatic and colour-opponent circuits that are spectrally matched to the dominant chromatic axes in nature. Second, in the horizontal and lower visual field bipolar cell terminals encoding achromatic and colour opponent visual features are systematically arranged into distinct layers of the inner retina. Third, above the frontal horizon, a high-gain ultraviolet-system piggy-backs onto retinal circuits, likely to support prey-capture

    Low resolution vision in a velvet worm (Onychophora)

    Get PDF
    Onychophorans, also known as velvet worms, possess a pair of simple lateral eyes, and are a key lineage with regard to the evolution of vision. They resemble ancient Cambrian forms, and are closely related to arthropods, which boast an unrivalled diversity of eye designs. Nonetheless, the visual capabilities of onychophorans have not been well explored. Here, we assess the spatial resolution of the onychophoran using behavioural experiments, three-dimensional reconstruction, anatomical and optical examinations, and modelling. Exploiting a spontaneous attraction towards dark objects, we find that can resolve stimuli that have the same average luminance as the background. Depending on the assumed contrast sensitivity of the animals, we estimate spatial resolution to be in the range of 15° to 40°. This results from an arrangement where the cornea and lens project the image largely behind the retina. The peculiar ellipsoid shape of the eye in combination with the asymmetric position and tilted orientation of the lens may improve spatial resolution in the forward direction. Nonetheless, the unordered network of interdigitating photoreceptors, which fills the whole eye chamber, precludes high acuity vision. Our findings suggest that adult specimens of cannot spot or visually identify prey or conspecifics beyond a few centimetres from the eye, but the coarse spatial resolution that the animals exhibited in our experiments is likely sufficient to find shelter and suitable microhabitats from further away. To our knowledge, this is the first evidence of resolving vision in an onychophoran

    The sea urchin Diadema africanum uses low resolution vision to find shelter and deter enemies

    Get PDF
    Many sea urchins can detect light on their body surface and some species are reported to possess image-resolving vision. Here, we measure the spatial resolution of vision in the long-spined sea urchin Diadema africanum, using two different visual responses: a taxis towards dark objects and an alarm response of spine-pointing towards looming stimuli. For the taxis response we used visual stimuli, which were isoluminant to the background, to discriminate spatial vision from phototaxis. Individual animals were placed in the centre of a cylindrical arena under bright down-welling light, with stimuli of varying angular width placed on the arena wall at alternating directions from the centre. We tracked the direction of movement of individual animals in relation to the stimuli to determine whether the animals oriented towards the stimulus. We found that D. africanum responds by taxis towards isoluminant stimuli with a spatial resolution in the range of 29–69 deg. This corresponds to a theoretical acceptance angle of 38–89 deg, assuming a contrast threshold of 10%. The visual acuity of the alarm response of D. africanum was tested by exposing animals to different sized dark looming and appearing stimuli on a monitor. We found that D. africanum displays a spine-pointing response to appearing black circles of 13–25 deg angular width, corresponding to an acceptance angle of 60–116 deg, assuming the same contrast threshold as above

    The jumping spider Saitis barbipes lacks a red photoreceptor to see its own sexually dimorphic red coloration

    Get PDF
    Examining the role of color in mate choice without testing what colors the study animal is capable of seeing can lead to ill-posed hypotheses and erroneous conclusions. Here, we test the seemingly reasonable assumption that the sexually dimorphic red coloration of the male jumping spider Saitis barbipes is distinguishable, by females, from adjacent black color patches. Using microspectrophotometry, we find clear evidence for photoreceptor classes with maximal sensitivity in the UV (359 nm) and green (526 nm), inconclusive evidence for a photoreceptor maximally sensitive in the blue (451 nm), and no evidence for a red photoreceptor. No colored filters within the lens or retina could be found to shift green sensitivity to red. To quantify and visualize whether females may nevertheless be capable of discriminating red from black color patches, we take multispectral images of males and calculate photoreceptor excitations and color contrasts between color patches. Red patches would be, at best, barely discriminable from black, and not discriminable from a low-luminance green. Some color patches that appear achromatic to human eyes, such as beige and white, strongly absorb UV wavelengths and would appear as brighter “spider-greens” to S. barbipes than the red color patches. Unexpectedly, we discover an iridescent UV patch that contrasts strongly with the UV-absorbing surfaces dominating the rest of the spider. We propose that red and black coloration may serve identical purposes in sexual signaling, functioning to generate strong achromatic contrast with the visual background. The potential functional significance of red coloration outside of sexual signaling is discussed

    Velarium control and visual steering in box jellyfish

    Get PDF
    Directional swimming in the box jellyfish Tripedalia cystophora (cubozoa, cnidaria) is controlled by the shape of the velarium, which is a thin muscular sheet that forms the opening of the bell. It was unclear how different patterns of visual stimulation control directional swimming and that is the focus of this study. Jellyfish were tethered inside a small experimental tank, where the four vertical walls formed light panels. All four panels were lit at the start of an experiment. The shape of the opening in the velarium was recorded in response to switching off different combinations of panels. We found that under the experimental conditions the opening in the velarium assumed three distinct shapes during a swim contraction. The opening was (1) centred or it was off-centred and pocketed out either towards (2) a rhopalium or (3) a pedalium. The shape of the opening in the velarium followed the direction of the stimulus as long as the stimulus contained directional information. When the stimulus contained no directional information, the percentage of centred pulses increased and the shape of the off-centred pulses had a random orientation. Removing one rhopalium did not change the directional response of the animals, however, the number of centred pulses increased. When three rhopalia were removed, the percentage of centred pulses increased even further and the animals lost their ability to respond to directional information

    The evolution of eyes and visually guided behaviour

    Get PDF
    The morphology and molecular mechanisms of animal photoreceptor cells and eyes reveal a complex pattern of duplications and co-option of genetic modules, leading to a number of different light-sensitive systems that share many components, in which clear-cut homologies are rare. On the basis of molecular and morphological findings, I discuss the functional requirements for vision and how these have constrained the evolution of eyes. The fact that natural selection on eyes acts through the consequences of visually guided behaviour leads to a concept of task-punctuated evolution, where sensory systems evolve by a sequential acquisition of sensory tasks. I identify four key innovations that, one after the other, paved the way for the evolution of efficient eyes. These innovations are (i) efficient photopigments, (ii) directionality through screening pigment, (iii) photoreceptor membrane folding, and (iv) focusing optics. A corresponding evolutionary sequence is suggested, starting at non-directional monitoring of ambient luminance and leading to comparisons of luminances within a scene, first by a scanning mode and later by parallel spatial channels in imaging eyes

    Contrast and rate of light intensity decrease control directional swimming in the box jellyfish Tripedalia cystophora (Cnidaria, Cubomedusae)

    Get PDF
    Box jellyfish respond to visual stimuli by changing the dynamics and frequency of bell contractions. In this study, we determined how the contrast and the dimming time of a simple visual stimulus affected bell contraction dynamics in the box jellyfish Tripedalia cystophora. Animals were tethered in an experimental chamber where the vertical walls formed the light stimuli. Two neighbouring walls were darkened and the contraction of the bell was monitored by high-speed video. We found that (1) bell contraction frequency increased with increasing contrast and decreasing dimming time. Furthermore, (2) when increasing the contrast and decreasing the dimming time pulses with an off-centred opening had a better defined direction and (3) the number of centred pulses decreased. Only weak effects were found on the relative diameter of the contracted bell and no correlation was found for the duration of bell contraction. Our observations show that visual stimuli modulate swim speed in T. cystophora by changing the swim pulse frequency. Furthermore, the direction of swimming is better defined when the animal perceives a high-contrast, or fast dimming, stimulus
    • …
    corecore