21 research outputs found

    Water Supply Planning: Middle Illinois Progress Report

    Get PDF
    This report presents a summary of 1) the technical information assembled to describe existing water availability and sources of supply within the 7-county (LaSalle, Livingston, Marshall, Peoria, Putnam, Stark, and Woodford Counties) Middle Illinois River Region in central Illinois (Figures 1 and 2) and 2) the development of preliminary computer models that will be used in future studies to estimate impacts to water availability resulting from future water development in the region. Through funding by the Illinois Department of Natural Resources (IDNR), the Illinois State Water Survey (ISWS) and Illinois State Geological Survey (ISGS) prepared this document for the Middle Illinois Regional Water Supply Planning Committee (MIRWSPC) to aid in the development of a plan for meeting the future growth of water supply demands within the basin to the year 2060. It contains background information to provide an overview of management criteria and an understanding of the constraints and policies used in conducting analyses and making decisions concerning water usage. Models will be applied to a broad range of conditions, including a set of selected future water use scenarios to more fully characterize water availability within the Middle Illinois River Region to the year 2060. In addition, as the MIRWSPC deliberates and prepares its water supply planning document, the information presented in this report will be reviewed and, in some cases, additional analysis may be performed and results revised. A more complete reporting of the model development, the results of the scenario simulations, and subsequent work concerning water availability will be published at the end of that forthcoming study. The existing technical information compiled as the first task of this study includes a review of previous analyses and publications dealing with the Middle Illinois River Region’s water resources; collection of hydrogeological and hydrologic data, primarily as needed for modeling; and, in certain cases, additional analyses of that data, such as data mining of well records and yield analyses of surface water supply sources. This compiled information focuses on the three primary sources of water supply within the Middle Illinois River watershed: 1) direct withdrawals from the Illinois River; 2) public supply systems using the Vermilion River and off-channel reservoirs at Pontiac and Streator; and 3) groundwater from within the Middle Illinois River basin. A companion report has been published (Meyer et al., In preparation) evaluating water demand scenarios out to 2060 for the Middle Illinois River, Northwest Illinois, and Kankakee River Regions.published or submitted for publicationis peer reviewedOpe

    Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices

    Get PDF
    Unconventional ferroelectricity exhibited by hafnia-based thin films-robust at nanoscale sizes-presents tremendous opportunities in nanoelectronics. However, the exact nature of polarization switching remains controversial. We investigated a La0.67Sr0.33MnO3/Hf0.5Zr0.5O2 capacitor interfaced with various top electrodes while performing in situ electrical biasing using atomic-resolution microscopy with direct oxygen imaging as well as with synchrotron nanobeam diffraction. When the top electrode is oxygen reactive, we observe reversible oxygen vacancy migration with electrodes as the source and sink of oxygen and the dielectric layer acting as a fast conduit at millisecond time scales. With nonreactive top electrodes and at longer time scales (seconds), the dielectric layer also acts as an oxygen source and sink. Our results show that ferroelectricity in hafnia-based thin films is unmistakably intertwined with oxygen voltammetry

    Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference) and obesity (BMI >2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesit

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Origin and dynamics of umbrella states in rare-earth iron garnets

    Full text link
    Rare-earth iron garnets R3R_{3}Fe5_{5}O12_{12} are fascinating insulators with very diverse magnetic phases. Their strong potential in spintronic devices has encouraged a renewal of interest in the study of their low temperature spin structures and spin wave dynamics. A striking feature of rare-earth garnets with RR-ions exhibiting strong crystal-field effects like Tb-, Dy-, Ho-, and Er-ions is the observation of low-temperature non-collinear magnetic structures featuring ``umbrella-like'' arrangements of the rare-earth magnetic moments. In this study, we demonstrate that such umbrella-like spin structures are naturally emerging from the crystal-field anisotropies of the rare-earth ions. By means of a general model endowed with only the necessary elements from the crystal structure, we show how umbrella-like spin structures can take place and calculate the canting-angle as a result of the competition between the exchange-interaction of the rare-earth and the iron ions as well as the crystal-field anisotropy. Our results are compared to experimental data, and a study of the polarised spin wave dynamics is presented. Our study improves the understanding of ``umbrella-like'' spin structures and paves the way for more complex spin wave calculations in rare-earth iron garnets with non-collinear magnetic phases.Comment: 8 pages, 7 figure
    corecore