75 research outputs found

    Directed Percolation arising in Stochastic Cellular Automata

    Get PDF
    12 pagesCellular automata are both seen as a model of computation and as tools to model real life systems. Historically they were studied under synchronous dynamics where all the cells of the system are updated at each time step. Meanwhile the question of probabilistic dynamics emerges: on the one hand, to develop cellular automata which are capable of reliable computation even when some random errors occur; on the other hand, because synchronous dynamics is not a reasonable assumption to simulate real life systems. Among cellular automata a specific class was largely studied in synchronous dynamics : the elementary cellular automata (ECA). These are the "simplest" cellular automata. Nevertheless they exhibit complex behaviors and even Turing universality. Several studies have focused on this class under alpha-asynchronous dynamics where each cell has a probability alpha to be updated independently. It has been shown that some of these cellular automata exhibit interesting behavior such as phase transition when the asynchronicity rate alpha varies. Due to their richness of behavior, probabilistic cellular automata are also very hard to study. Almost nothing is known of their behavior. Understanding these "simple" rules is a key step to analyze more complex systems. We present here a coupling between oriented percolation and ECA 178 and confirms previous observations that percolation may arise in cellular automata. As a consequence this coupling shows that there is a positive probability that the ECA 178 does not reach a stable configuration with positive probability as soon as the initial configuration is not a stable configuration and alpha > 0.996. Experimentally, this result seems to stay true as soon as alpha > alpha_c where alpha_c is almost 0.5

    Stochastic Flips on Two-letter Words

    Get PDF
    This paper introduces a simple Markov process inspired by the problem of quasicrystal growth. It acts over two-letter words by randomly performing \emph{flips}, a local transformation which exchanges two consecutive different letters. More precisely, only the flips which do not increase the number of pairs of consecutive identical letters are allowed. Fixed-points of such a process thus perfectly alternate different letters. We show that the expected number of flips to converge towards a fixed-point is bounded by O(n3)O(n^3) in the worst-case and by O(n5/2lnn)O(n^{5/2}\ln{n}) in the average-case, where nn denotes the length of the initial word.Comment: ANALCO'1

    Directed Non-Cooperative Tile Assembly Is Decidable

    Get PDF
    We provide a complete characterisation of all final states of a model called directed non-cooperative tile self-assembly, also called directed temperature 1 tile assembly, which proves that this model cannot possibly perform Turing computation. This model is a deterministic version of the more general undirected model, whose computational power is still open. Our result uses recent results in the domain, and solves a conjecture formalised in 2011. We believe that this is a major step towards understanding the full model. Temperature 1 tile assembly can be seen as a two-dimensional extension of finite automata, where geometry provides a form of memory and synchronisation, yet the full power of these "geometric blockings" was still largely unknown until recently (note that nontrivial algorithms which are able to build larger structures than the naive constructions have been found)

    Stochastic Flips on Dimer Tilings

    No full text
    International audienceThis paper introduces a Markov process inspired by the problem of quasicrystal growth. It acts over dimer tilings of the triangular grid by randomly performing local transformations, called flips\textit{flips}, which do not increase the number of identical adjacent tiles (this number can be thought as the tiling energy). Fixed-points of such a process play the role of quasicrystals. We are here interested in the worst-case expected number of flips to converge towards a fixed-point. Numerical experiments suggest a Θ(n2)\Theta (n^2) bound, where nn is the number of tiles of the tiling. We prove a O(n2.5)O(n^{2.5}) upper bound and discuss the gap between this bound and the previous one. We also briefly discuss the average-case

    About non-monotony in Boolean automata networks

    Get PDF
    International audienceThis paper aims at presenting motivations and rst results of a prospective theoretical study on the role of non-monotone interactions in the modelling process of biological regulation networks. Focusing on discrete models of these networks, namely, Boolean automata networks, we propose to analyse the contribution of non-monotony to the diversity and complexity in their dynamical behaviours. More precisely, in this paper, we start by detail- ing some motivations, both mathematical and biological, for our interest in non-monotony, and we discuss how it may account for phenomena that cannot be produced by monotony only. Then, to build some understanding in this direction, we show some preliminary results on the dynamical be- haviours of some speci c non-monotone Boolean automata networks called xor circulant networks
    corecore