65 research outputs found

    Modulation of estrogen signalling by enterolactone and its dietary sources

    Get PDF
    Siirretty Doriast

    Biosensors Paving the Way to Understanding the Interaction between Cadmium and the Estrogen Receptor Alpha

    Get PDF
    Cadmium is a toxic heavy metal ubiquitously present in the environment and subsequently in the human diet. Cadmium has been proposed to disrupt the endocrine system, targeting in particular the estrogen signaling pathway already at environmentally relevant concentrations. Thus far, the reports on the binding affinity of cadmium towards human estrogen receptor alpha (hERα) have been contradicting, as have been the reports on the in vivo estrogenicity of cadmium. Hence, the mode of interaction between cadmium and the receptor remains unclear. Here, we investigated the interaction between cadmium and hERα on a molecular level by applying a novel, label-free biosensor technique based on reflectometric interference spectroscopy (RIfS). We studied the binding of cadmium to hERα, and the conformation of the receptor following cadmium treatment. Our data reveals that cadmium interacts with the ligand binding domain (LBD) of the ERα and affects the conformation of the receptor. However, the binding event, as well as the induced conformation change, greatly depends on the accessibility of the cysteine tails in the LBD. As the LBD cysteine residues have been reported as targets of post-translational modifications in vivo, we present a hypothesis according to which different cellular pools of ERα respond to cadmium differently. Our proposed theory could help to explain some of the previously contradicting results regarding estrogen-like activity of cadmium

    Phthalates, ovarian function and fertility in adulthood

    Get PDF
    Phthalates are a family of high-production volume industrial chemicals used in the manufacture of plastics. Some phthalates are regulated as endocrine disrupting chemicals (EDCs) and reproductive toxicants based on adverse effects in the male. Potential effects in females are less understood although exposure levels can be higher in women compared to men. Here, we review the literature on the effects of phthalate exposures in adulthood on ovarian function and fertility in women. Experimental studies using cell cultures and rodents combined with human evidence from epidemiological studies suggest that phthalates pose a hazard to ovaries. Phthalates can disrupt follicle growth pattern, increase oxidative stress and cause follicle death. These effects could lead to infertility, faster depletion of ovarian reserve, and earlier reproductive senescence. However, more studies using more realistic exposure levels will be needed to properly assess the risks in women. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).</p

    The Continued Absence of Functional Germline Stem Cells in Adult Ovaries

    Get PDF
    Ovaries are central to development, fertility, and reproduction of women. A particularly interesting feature of ovaries is their accelerated aging compared to other tissues, leading to loss of function far before other organs senesce. The limited pool of ovarian follicles is generated before birth and once exhausted, menopause will inevitably commence around the age of 50 years marking the end of fertility. Yet, there are reports suggesting the presence of germline stem cells and neo-oogenesis in adult human ovaries. These observations have fueled a long debate, created experimental fertility treatments, and opened business opportunities. Our recent analysis of cell types in the ovarian cortex of women of fertile age could not find evidence of germline stem cells. Like before, our work has been met with critique suggesting methodological shortcomings. We agree that excellence starts with methods and welcome discussion on the pros and cons of different protocols. In this commentary, we discuss the recent re-interpretation of our work.Peer reviewe

    Bovine oocyte exposure to perfluorohexane sulfonate (PFHxS) induces phenotypic, transcriptomic, and DNA methylation changes in resulting embryos in vitro

    Get PDF
    Knowledge on the effects of perfluorohexane sulfonate (PFHxS) on ovarian function is limited. In the current study, we investigated the sensitivity of oocytes to PFHxS during in vitro maturation (IVM), including conse-quences on embryo development at the morphological, transcriptomic, and epigenomic levels. Bovine cumulus-oocyte complexes (COCs) were exposed to PFHxS during 22 h IVM. Following fertilisation, developmental competence was recorded until day 8 of culture. Two experiments were conducted: 1) exposure of COCs to 0.01 mu g mL(-1) -100 mu g mL(-1) PFHxS followed by confocal imaging to detect neutral lipids and nuclei, and 2) exposure of COCs to 0.1 mu g mL(-1) PFHxS followed by analysis of transcriptomic and DNA methylation changes in blastocysts. Decreased oocyte developmental competence was observed upon exposure to & nbsp;>= 40 mu g mL(-1) PFHxS and altered lipid distribution was observed in the blastocysts upon exposure to 1-10 mu g mL(-1) PFHxS (not observed at lower or higher concentrations). Transcriptomic data showed that genes affected by 0.1 mu g mL(-1) PFHxS were enriched for pathways related to increased synthesis and production of reactive oxygen species. Enrichment for peroxisome proliferator-activated receptor-gamma and oestrogen pathways was also observed. Genes linked to DNA methylation changes were enriched for similar pathways. In conclusion, exposure of the bovine oocyte to PFHxS during the narrow window of IVM affected subsequent embryonic development, as reflected by morphological and mo- lecular changes. This suggests that PFHxS interferes with the final nuclear and cytoplasmic maturation of the oocyte leading to decreased developmental competence to blastocyst stage

    Associations between lifestyle factors and levels of per- and polyfluoroalkyl substances (PFASs), phthalates and parabens in follicular fluid in women undergoing fertility treatment

    Get PDF
    Background: Concerns have been raised whether exposure to endocrine-disrupting chemicals (EDCs) can alter reproductive functions and play a role in the aetiology of infertility in women. With increasing evidence of adverse effects, information on factors associated with exposure is necessary to form firm recommendations aiming at reducing exposure.Objective: Our aim was to identify associations between lifestyle factors including the home environment, use of personal care products (PCP), and dietary habits and concentrations of EDCs in ovarian follicular fluid.Methods: April-June 2016, 185 women undergoing ovum pick-up for in vitro fertilisation in Sweden were recruited. Correlation analyses were performed between self-reported lifestyle factors and concentration of EDCs analysed in follicular fluid. Habits related to cleaning, PCPs, and diet were assessed together with concentration of six per- and polyfluoroalkyl substances (PFASs) [PFHxS, PFOA, PFOS, PFNA, PFDA and PFUnDA], methyl paraben and eight phthalate metabolites [MECPP, MEHPP, MEOHP, MEHP, cxMinCH, cxMiNP, ohMiNP, MEP, MOHiBP]. Spearman's partial correlations were adjusted for age, parity and BMI.Results: Significant associations were discovered between multiple lifestyle factors and concentrations of EDCs in ovarian follicular fluid. After correcting p values for multiple testing, frequent use of perfume was associated with MEP (correlation rho = 0.41 (confidence interval 0.21-0.47), p < 0.001); hens' egg consumption was positively associated with PFOS (rho = 0.30 (0.15-0.43), p = 0.007) and PFUnDA (rho = 0.27 (0.12-0.40), p = 0.036). White fish consumption was positively associated with PFUnDA (rho = 0.34 (0.20-0.47), p < 0.001) and PFDA (rho = 0.27 (0.13-0.41), p = 0.028). More correlations were discovered when considering the raw uncorrected p values. Altogether, our results suggest that multiple lifestyle variables affect chemical contamination of follicular fluid.Impact statement: This study shows how lifestyle factors correlate with the level of contamination in the ovary by both persistent and semi-persistent chemicals in women of reproductive age. Subsequently, these data can be used to form recommendations regarding lifestyle to mitigate possible negative health outcomes and fertility problems associated with chemical exposure, and to inform chemical policy decision making. Our study can also help form the basis for the design of larger observational and intervention studies to examine possible effects of lifestyle changes on exposure levels, and to unravel the complex interactions between biological factors, lifestyle and chemical exposures in more detail

    Overexpression of Human Estrogen Biosynthetic Enzyme Hydroxysteroid (17beta) Dehydrogenase Type 1 Induces Adenomyosis-like Phenotype in Transgenic Mice

    Get PDF
    Hydroxysteroid (17beta) dehydrogenase type 1 (HSD17B1) is an enzyme that converts estrone to estradiol, while adenomyosis is an estrogen-dependent disease with poorly understood pathophysiology. In the present study, we show that mice universally over-expressing human estrogen biosynthetic enzyme HSD17B1 (HSD17B1TG mice) present with adenomyosis phenotype, characterized by histological and molecular evaluation. The first adenomyotic changes with endometrial glands partially or fully infiltrated into the myometrium appeared at the age of 5.5 months in HSD17B1TG females and became more prominent with increasing age. Preceding the phenotype, increased myometrial smooth muscle actin positivity and increased amount of glandular myofibroblast cells were observed in HSD17B1TG uteri. This was accompanied by transcriptomic upregulation of inflammatory and estrogen signaling pathways. Further, the genes upregulated in the HSD17B1TG uterus were enriched with genes previously observed to be induced in the human adenomyotic uterus, including several genes of the NFKB pathway. A 6-week-long HSD17B1 inhibitor treatment reduced the occurrence of the adenomyotic changes by 5-fold, whereas no effect was observed in the vehicle-treated HSD17B1TG mice, suggesting that estrogen is the main upstream regulator of adenomyosis-induced uterine signaling pathways. HSD17B1 is considered as a promising drug target to inhibit estrogen-dependent growth of endometrial disorders. The present data indicate that HSD17B1 over-expression in TG mice results in adenomyotic changes reversed by HSD17B1 inhibitor treatment and HSD17B1 is, thus, a potential novel drug target for adenomyosis.</p

    Follicular fluid and blood levels of persistent organic pollutants and reproductive outcomes among women undergoing assisted reproductive technologies

    Get PDF
    Persistent organic pollutants (POPs) are industrial chemicals resistant to degradation and have been shown to have adverse effects on reproductive health in wildlife and humans. Although regulations have reduced their levels, they are still ubiquitously present and pose a global concern. Here, we studied a cohort of 185 women aged 21-43 years with a median of 2 years of infertility who were seeking assisted reproductive technology (ART) treatment at the Carl von Linne Clinic in Uppsala, Sweden. We analyzed the levels of 9 organochlorine pesticides (OCPs), 10 polychlorinated biphenyls (PCBs), 3 polybrominated diphenyl ethers (PBDEs), and 8 perfluoroalkyl substances (PFASs) in the blood and follicular fluid (FF) samples collected during ovum pick-up. Impact of age on chemical transfer from blood to FF was analyzed. Associations of chemicals, both individually and as a mixture, to 10 ART endpoints were investigated using linear, logistic, and weighted quantile sum regression, adjusted for age, body mass index, parity, fatty fish intake and cause of infertility. Out of the 30 chemicals, 20 were detected in more than half of the blood samples and 15 in FF. Chemical transfer from blood to FF increased with age. Chemical groups in blood crossed the blood-follicle barrier at different rates: OCPs > PCBs > PFASs. Hexachlorobenzene, an OCP, was associated with lower anti-Miillerian hormone, clinical pregnancy, and live birth. PCBs and PFASs were associated with higher antral follicle count and ovarian response as measured by ovarian sensitivity index, but also with lower embryo quality. As a mixture, similar findings were seen for the sum of PCBs and PFASs. Our results suggest that age plays a role in the chemical transfer from blood to FF and that exposure to POPs significantly associates with ART outcomes. We strongly encourage further studies to elucidate the underlying mechanisms of reproductive effects of POPs in humans

    Estrogen-Like Effects of Cadmium in Vivo Do Not Appear to be Mediated via the Classical Estrogen Receptor Transcriptional Pathway

    Get PDF
    Cadmium is a toxic metal classified as human carcinogen and ubiquitously found in our environment mainly from anthropogenic activities. Exposure to cadmium has been associated with increased risk of certain hormone-dependent cancers in humans, and the metal has been proposed to possess endocrine disruptive properties by mimicking the physiological actions of estrogens. However, the mechanisms behind these effects are unclear. The overall aim of this thesis was to provide mechanistic insights into the estrogenicity of cadmium that may have implications for the human health. To achieve this aim, investigations on the estrogen-like effects of cadmium as well as possible involvement of classical/non-classical estrogen receptor signaling was studied in mice, and these mechanisms were further scrutinized in cell-based models. Furthermore, associations of biomarker of cadmium exposure with endogenous circulating sex hormones were evaluated in a population-based study of women. Results presented here indicate that exposure to cadmium does not affect the genomic estrogen response in vivo in mice, suggesting that classical estrogen signaling is not targeted by cadmium. However, some estrogen-like effects were observed in cadmium exposed mice, i.e. significant thickening of uterine epithelia, in the absence of uterine weight increase, and activation of ERK1/2 MAPKs in the liver. This suggests the existence of alternative signaling pathways modulated by cadmium. In addition, exposure to a wide dose range of cadmium, dose-dependently increased the expression of the endogenous genes Mt1, Mt2, p53, c-fos, and Mdm2 in mouse liver, with p53 being the most sensitive gene. However, phosphorylation of ERK1/2 was already induced at the lowest exposure level (0.5µg/kg body weight), rendering ERK1/2 a more sensitive marker of exposure than any change in gene expression. Furthermore, in vivo findings suggest that cadmium-induced effects are markedly concentration dependent: low-level exposure activates protein-kinases whereas high-level exposure turns on cellular stress responses. The data from in vitro studies indicate that cadmium at regular human exposure levels activates protein-kinase signaling through Raf-MEK-ERK/MAPKs, and we identified EGFR and GPR30 as the mediating receptors. This cadmium-induced activation of protein-kinases further leads to a disturbance in Mdm2/p53 balance, with a significant increase in the Mdm2/p53 ratio in the presence of genotoxic compounds, which in turn suggest that cadmium may disrupt stress response to genotoxins. In 438 postmenopausal women, a positive association was observed between the concentrations of cadmium in blood and testosterone in serum, while an inverse association was observed with estradiol. This may suggest that cadmium affects steroidogenesis. In conclusion, data presented in this thesis collectively suggests that cadmium-induced estrogen-like effects do not involve classical estrogen receptor signaling but rather appear to be mediated via membrane-associated signaling. The activation/ transactivation of GPR30/EGFR-Raf-MEK-ERK/MAPKs and Mdm2 represent a general mechanism by which cadmium may exert its effects. Since EGFR, ERK and Mdm2 are all known key players in cancer promotion, cadmium-induced activation of these and disturbance in the estradiol/testosterone balance in women may have implications for the promotion/development of hormone-related cancers
    • …
    corecore