17 research outputs found

    Prévision du rayonnement solaire global par télédétection pour la gestion de la production d’énergie photovoltaïque

    No full text
    To handle the integration of intermittent energies to the existing grid,managers require more and more acurate tools to forecast the primary resources. This thesisfocuses on the very short term forecast of the global horizontal irradiance (GHI), maininput for most photovoltaic power plant. We chose to use both ground based images fromhemispherical cameras and satellite images to provide a forecating tool. In the first handwe present a novel appraoch to estimate the GHI using ground based images. On secondhand, we propose several satellite based methods to forecast the GHI up to one hour. Finally,we developp a new method allowing us to merge both data in order to benefit from theirrespective advantages. All the methods were tested against real data acquired on the SIRTAsite, Polytechnique campus.L’intégration des énergies intermittentes sur le réseau électrique existant soulèvedes problèmes de stabilité de la balance consommation/production. Afin de limiter les risques,la loi autorise un taux de pénétration maximum de ces énergies de 30% de la puissanceinstallée. Afin de pallier cette limitation, deux pistes sont envisagées, le stockage d’énergie etla prévision de production. Les travaux menés dans cette thèse s’inscrivent dans la secondecatégorie et se concentrent sur la prévision du rayonnement global au sol, ressource principaledes systèmes de production d’énergie photovoltaïque. Dans l’objectif d’une prévision à trèscourt terme (infra-horaire), la problématique développée concerne la fusion d’informationsprovenant d’une part d’observations satellitaires et de l’autre d’observations in-situ telles quedes images hémisphériques. L’approche suivie se veut progressive et s’articule autour de 4grand axes. Le premier chapitre énonce les définitions et les enjeux principaux liés à l’étudedu GHI en décrivant les différents facteurs physiques ayant des interactions sur sa mesure. Lesecond chapitre permet d’évaluer le potentiel des images hémisphériques pour l’estimation durayonnement global. On y développe une méthode d’estimation du GHI basée sur l’utilisationd’un réseau de neurones artificiels permettant d’effectuer une régression non linéaire entre descaractéristiques choisie de l’image et le rayonnement mesuré sur site par un pyranomètre. Letroisième chapitre concerne l’utilisation des images satellitaires pour la prévision à très courtterme du rayonnement global. L’originalité des méthodes proposées provient de l’utilisationen entrées de cartes de rayonnement dérivées des images satellitaires via une méthode externe.L’utilisation de ces cartes de rayonnement permet la construction de modèles linéairessimples (modèles auto-régressifs) grâce à l’homogénéité des données utilisées. Cependant,leur pertinence pour le calcul de champ de vecteurs a également été prouvé et validé dans unsecond modèle. La comparaison des deux modèles ainsi créés à partir d’imagerie satellitairea permis de caractériser les forces et faiblesses de ces modèles. L’intérêt de l’observationsatellitaire réside dans l’anticipation du déplacement des masses nuageuse. Cependant, unbiais non systématique persiste dans la conversion des valeurs des pixels en rayonnement.Ce biais est inhérent à la résolution spatio-temporelle de ces observations. Étant donné cesconsidérations, le chapitre 4 présente alors une méthode d’intégration des données acquisespar l’imagerie hémisphérique, disposant une meilleure résolution spatio-temporelle, dans lesrésultats de prévision satellitaires précédemment évoqués. On joint alors les caractéristiquesretenues au chapitre 2 dans un réseau de neurone avec la prévision pour produire uneprévision dont le biais est largement réduit. L’utilisation de caractéristiques dérivées del’imagerie hémisphérique à la place de simple mesures du pyranomètre est justifiée par l’effetde persistance non souhaité apportées par ces dernières. Ainsi, après avoir étudié chaquesource d’information séparément, on a pu développer un modèle leur permettant de secompléter

    Nowcasting and very short term forecasting of the global horizontal irradiance at ground level : application to photovoltaic output forecasting

    No full text
    L’intégration des énergies intermittentes sur le réseau électrique existant soulèvedes problèmes de stabilité de la balance consommation/production. Afin de limiter les risques,la loi autorise un taux de pénétration maximum de ces énergies de 30% de la puissanceinstallée. Afin de pallier cette limitation, deux pistes sont envisagées, le stockage d’énergie etla prévision de production. Les travaux menés dans cette thèse s’inscrivent dans la secondecatégorie et se concentrent sur la prévision du rayonnement global au sol, ressource principaledes systèmes de production d’énergie photovoltaïque. Dans l’objectif d’une prévision à trèscourt terme (infra-horaire), la problématique développée concerne la fusion d’informationsprovenant d’une part d’observations satellitaires et de l’autre d’observations in-situ telles quedes images hémisphériques. L’approche suivie se veut progressive et s’articule autour de 4grand axes. Le premier chapitre énonce les définitions et les enjeux principaux liés à l’étudedu GHI en décrivant les différents facteurs physiques ayant des interactions sur sa mesure. Lesecond chapitre permet d’évaluer le potentiel des images hémisphériques pour l’estimation durayonnement global. On y développe une méthode d’estimation du GHI basée sur l’utilisationd’un réseau de neurones artificiels permettant d’effectuer une régression non linéaire entre descaractéristiques choisie de l’image et le rayonnement mesuré sur site par un pyranomètre. Letroisième chapitre concerne l’utilisation des images satellitaires pour la prévision à très courtterme du rayonnement global. L’originalité des méthodes proposées provient de l’utilisationen entrées de cartes de rayonnement dérivées des images satellitaires via une méthode externe.L’utilisation de ces cartes de rayonnement permet la construction de modèles linéairessimples (modèles auto-régressifs) grâce à l’homogénéité des données utilisées. Cependant,leur pertinence pour le calcul de champ de vecteurs a également été prouvé et validé dans unsecond modèle. La comparaison des deux modèles ainsi créés à partir d’imagerie satellitairea permis de caractériser les forces et faiblesses de ces modèles. L’intérêt de l’observationsatellitaire réside dans l’anticipation du déplacement des masses nuageuse. Cependant, unbiais non systématique persiste dans la conversion des valeurs des pixels en rayonnement.Ce biais est inhérent à la résolution spatio-temporelle de ces observations. Étant donné cesconsidérations, le chapitre 4 présente alors une méthode d’intégration des données acquisespar l’imagerie hémisphérique, disposant une meilleure résolution spatio-temporelle, dans lesrésultats de prévision satellitaires précédemment évoqués. On joint alors les caractéristiquesretenues au chapitre 2 dans un réseau de neurone avec la prévision pour produire uneprévision dont le biais est largement réduit. L’utilisation de caractéristiques dérivées del’imagerie hémisphérique à la place de simple mesures du pyranomètre est justifiée par l’effetde persistance non souhaité apportées par ces dernières. Ainsi, après avoir étudié chaquesource d’information séparément, on a pu développer un modèle leur permettant de secompléter.To handle the integration of intermittent energies to the existing grid,managers require more and more acurate tools to forecast the primary resources. This thesisfocuses on the very short term forecast of the global horizontal irradiance (GHI), maininput for most photovoltaic power plant. We chose to use both ground based images fromhemispherical cameras and satellite images to provide a forecating tool. In the first handwe present a novel appraoch to estimate the GHI using ground based images. On secondhand, we propose several satellite based methods to forecast the GHI up to one hour. Finally,we developp a new method allowing us to merge both data in order to benefit from theirrespective advantages. All the methods were tested against real data acquired on the SIRTAsite, Polytechnique campus

    Prévision du rayonnement solaire global par télédétection pour la gestion de la production d’énergie photovoltaïque

    No full text
    To handle the integration of intermittent energies to the existing grid,managers require more and more acurate tools to forecast the primary resources. This thesisfocuses on the very short term forecast of the global horizontal irradiance (GHI), maininput for most photovoltaic power plant. We chose to use both ground based images fromhemispherical cameras and satellite images to provide a forecating tool. In the first handwe present a novel appraoch to estimate the GHI using ground based images. On secondhand, we propose several satellite based methods to forecast the GHI up to one hour. Finally,we developp a new method allowing us to merge both data in order to benefit from theirrespective advantages. All the methods were tested against real data acquired on the SIRTAsite, Polytechnique campus.L’intégration des énergies intermittentes sur le réseau électrique existant soulèvedes problèmes de stabilité de la balance consommation/production. Afin de limiter les risques,la loi autorise un taux de pénétration maximum de ces énergies de 30% de la puissanceinstallée. Afin de pallier cette limitation, deux pistes sont envisagées, le stockage d’énergie etla prévision de production. Les travaux menés dans cette thèse s’inscrivent dans la secondecatégorie et se concentrent sur la prévision du rayonnement global au sol, ressource principaledes systèmes de production d’énergie photovoltaïque. Dans l’objectif d’une prévision à trèscourt terme (infra-horaire), la problématique développée concerne la fusion d’informationsprovenant d’une part d’observations satellitaires et de l’autre d’observations in-situ telles quedes images hémisphériques. L’approche suivie se veut progressive et s’articule autour de 4grand axes. Le premier chapitre énonce les définitions et les enjeux principaux liés à l’étudedu GHI en décrivant les différents facteurs physiques ayant des interactions sur sa mesure. Lesecond chapitre permet d’évaluer le potentiel des images hémisphériques pour l’estimation durayonnement global. On y développe une méthode d’estimation du GHI basée sur l’utilisationd’un réseau de neurones artificiels permettant d’effectuer une régression non linéaire entre descaractéristiques choisie de l’image et le rayonnement mesuré sur site par un pyranomètre. Letroisième chapitre concerne l’utilisation des images satellitaires pour la prévision à très courtterme du rayonnement global. L’originalité des méthodes proposées provient de l’utilisationen entrées de cartes de rayonnement dérivées des images satellitaires via une méthode externe.L’utilisation de ces cartes de rayonnement permet la construction de modèles linéairessimples (modèles auto-régressifs) grâce à l’homogénéité des données utilisées. Cependant,leur pertinence pour le calcul de champ de vecteurs a également été prouvé et validé dans unsecond modèle. La comparaison des deux modèles ainsi créés à partir d’imagerie satellitairea permis de caractériser les forces et faiblesses de ces modèles. L’intérêt de l’observationsatellitaire réside dans l’anticipation du déplacement des masses nuageuse. Cependant, unbiais non systématique persiste dans la conversion des valeurs des pixels en rayonnement.Ce biais est inhérent à la résolution spatio-temporelle de ces observations. Étant donné cesconsidérations, le chapitre 4 présente alors une méthode d’intégration des données acquisespar l’imagerie hémisphérique, disposant une meilleure résolution spatio-temporelle, dans lesrésultats de prévision satellitaires précédemment évoqués. On joint alors les caractéristiquesretenues au chapitre 2 dans un réseau de neurone avec la prévision pour produire uneprévision dont le biais est largement réduit. L’utilisation de caractéristiques dérivées del’imagerie hémisphérique à la place de simple mesures du pyranomètre est justifiée par l’effetde persistance non souhaité apportées par ces dernières. Ainsi, après avoir étudié chaquesource d’information séparément, on a pu développer un modèle leur permettant de secompléter

    Spatio-temporal pattern recognition and nonlinear PCA for global horizontal irradiance forecasting

    No full text
    International audienceThis letter presents a novel technique for the forecast of the ground horizontal irradiance (GHI) from satellite-based images. To enhance the forecast accuracy, spatial information in addition to temporal information has been considered. This produced an increase in the computational load of the forecast process. Dimensionality reduction techniques based on nonlinear principal component analysis (PCA) are used to project the original data set into low-dimension feature space. A multilayer feedforward neural network classifier is used to model the signal through a training operation involving past history of the considered spatiotemporal signal. Experiments have been carried out on two different data sets. Comparisons with classical forecasting techniques demonstrate that the introduction of the spatial information permits to obtain better short-term forecast measurements for all types of sky conditions. Moreover, further analysis demonstrates that, compared with linear PCA, the nonlinear PCA is more appropriate for dimensionality reduction of spatiotemporal GHI data set

    Very short term forecasting of the Global Horizontal Irradiance using a spatio-temporal autoregressive model

    No full text
    International audienceThe integration of massive solar energy supply in the existing grids requires an accurate forecast of the solar resources to manage the energetic balance. In this context, we propose a new approach to forecast the Global Horizontal Irradiance at ground level from satellite images and ground based measurements. The training of spatio-temporal multidimensional autoregressive models with HelioClim-3 data along with 15-min averaged GHI times series is tested with respect to a ground based station from the BSRN network. Forecast horizons from 15 min to 1 h provided very promising results validated on a one year ground-based pyranometric data set. The performances have been compared to another similar method from the literature by means of relative metrics. The proposed approach paves the way of the use of satellite-based surface solar irradiance (SSI) estimation as an SSI map nowcasting method that enables to capture spatio-temporal correlation for the improvement of a local SSI forecast

    Active Learning to Assist Annotation of Aerial Images in Environmental Surveys

    No full text
    International audienceNowadays, remote sensing technologies greatly ease environmental assessment using aerial images. Such data are most often analyzed by a manual operator, leading to costly and non scalable solutions. In the fields of both machine learning and image processing, many algorithms have been developed to fasten and automate this complex task. Their main common assumption is the need to have prior ground truth available. However, for field experts or engineers, manually labeling the objects requires a time-consuming and tedious process. Restating the labeling issue as a binary classification one, we propose a method to assist the costly annotation task by introducing an active learning process, considering a query-by-group strategy. Assuming that a comprehensive context may be required to assist the annotator with the labeling task of a single instance, the labels of all the instances of an image are indeed queried. A score based on instances distribution is defined to rank the images for annotation and an appropriate retraining step is derived to simultaneously reduce the interaction cost and improve the classifier performances at each iteration. A numerical study on real images is conducted to assess the algorithm performances. It highlights promising results regarding the classification rate along with the chosen retraining strategy and the number of interactions with the user

    Active Learning to Assist Annotation of Aerial Images in Environmental Surveys

    Get PDF
    International audienceNowadays, remote sensing technologies greatly ease environmental assessment using aerial images. Such data are most often analyzed by a manual operator, leading to costly and non scalable solutions. In the fields of both machine learning and image processing, many algorithms have been developed to fasten and automate this complex task. Their main common assumption is the need to have prior ground truth available. However, for field experts or engineers, manually labeling the objects requires a time-consuming and tedious process. Restating the labeling issue as a binary classification one, we propose a method to assist the costly annotation task by introducing an active learning process, considering a query-by-group strategy. Assuming that a comprehensive context may be required to assist the annotator with the labeling task of a single instance, the labels of all the instances of an image are indeed queried. A score based on instances distribution is defined to rank the images for annotation and an appropriate retraining step is derived to simultaneously reduce the interaction cost and improve the classifier performances at each iteration. A numerical study on real images is conducted to assess the algorithm performances. It highlights promising results regarding the classification rate along with the chosen retraining strategy and the number of interactions with the user

    Data annotation with active learning: application to environmental surveys

    No full text
    International audienceAn active learning framework is introduced to deal with reducing the annotation cost for aerial images in environmental surveys. The selection of the queried instances at each step of the active process is here constrained by requiring that they belong to a group, an image (or a part of it) in our case. A score to rank the images and identify the one that should be annotated at each iteration is defined, based on both classifier uncertainty and performances. The performances of several strategies regarding the interaction gain are discussed based on an experiment on real image data collected for an environmental survey.Une procédure d'apprentissage actif est proposée pour réduire le coût d'annotation d'images aériennes pour des suivis environnementaux. La sélection des instances à étiqueter a chaque étape du processus actif est contrainte à l'appartenance à un groupe, une image (ou une partie d'image) dans notre cas. Un score pour classer les images et identifier celle qui doit être annotée à chaque itération est défini, en fonction de l'incertitude et des performances de détection du classifieur. Les performances de plusieurs stratégies concernant le gain d'interaction avec l'utilisateur sont discutées à partir d'une expérience sur des données d'images réelles collectées pour une étude environnementale
    corecore