164 research outputs found

    The Mind Agents in Netlogo 3.1

    Get PDF
    In [Houk, 2005], the “Agents of the mind” idea is proposed as a suitable framework for studying the dynamics and complexities of mind. “Agents of the mind” is inspired by the society of mind idea of Marvin Minsky [Minsky, 1988]. According to the society of mind, the mind is a complex system. The mind agents are elusive to identify. The mind is proposed as a hierarchy of agents. The higher hierarchy agents compose of lower hierarchy agents. Higher level agents do not command lower level agents but they basically trigger or invoke lower level agents. Agents are functional entities and they interact with each other. One important part of the society of mind idea is that agents at the lowest level are the real workers. Higher level functionalities emerge as a result of the functioning of the lower level agents and the interactions between them. In agents of the mind project, computational distributed processing modules (DPM) are posited for corresponding anatomically defined assemblies and they are referred to as the agents of the mind. M1 is an anatomical area in the cerebral cortex which produces voluntary commands via its loops through basal ganglia and cerebellum. M1-DPM is a computational distributed processing module which simulates M1 area and its loops for voluntary commands production. We use Netlogo 3.1 agent-based programming environment to illuminate the properties of mind. In this work, the attractor network in cerebellar loop and the effects of Purkinje cell on production of motor commands have been studied. The results are reported in this paper

    Strong coupling in massive gravity by direct calculation

    Full text link
    We consider four-dimensional massive gravity with the Fierz-Pauli mass term. The analysis of the scalar sector has revealed recently that this theory becomes strongly coupled above the energy scale \Lambda = (M_{Pl}^2 m^4)^{1/5} where m is the mass of the graviton. We confirm this scale by explicit calculations of the four-graviton scattering amplitude and of the loop correction to the interaction between conserved sources.Comment: 9 pages, 3 figures, some clarifications adde

    On brane-induced gravity in warped backgrounds

    Full text link
    We study whether modification of gravity at large distances is possible in warped backgrounds with two branes and a brane-induced term localized on one of the branes. We find that there are three large regions in the parameter space where the theory is weakly coupled up to high energies. In one of these regions gravity on the brane is four-dimensional at arbitrarily large distances, and the induced Einstein term results merely in the renormalization of the 4d Planck mass. In the other two regions the behavior of gravity changes at ultra-large distances; however, radion becomes a ghost. In parts of these regions, both branes have positive tensions, so the only reason for the appearance of the ghost field is the brane-induced term. In between these three regions, there are domains in the parameter space where gravity is strongly coupled at phenomenologically unacceptable low energy scale.Comment: 12 pages, 2 fig, JHEP3 style required, typos correcte

    The Power of Brane-Induced Gravity

    Get PDF
    We study the role of the brane-induced graviton kinetic term in theories with large extra dimensions. In five dimensions we construct a model with a TeV-scale fundamental Planck mass and a {\it flat} extra dimension the size of which can be astronomically large. 4D gravity on the brane is mediated by a massless zero-mode, whereas the couplings of the heavy Kaluza-Klein modes to ordinary matter are suppressed. The model can manifest itself through the predicted deviations from Einstein theory in long distance precision measurements of the planetary orbits. The bulk states can be a rather exotic form of dark matter, which at sub-solar distances interact via strong 5D gravitational force. We show that the induced term changes dramatically the phenomenology of sub-millimeter extra dimensions. For instance, high-energy constraints from star cooling or cosmology can be substantially relaxed.Comment: 24 pages, 4 eps figures; v2 typos corrected; v3 1 ref. added; PRD versio

    Nonlinear Dynamics of 3D Massive Gravity

    Full text link
    We explore the nonlinear classical dynamics of the three-dimensional theory of "New Massive Gravity" proposed by Bergshoeff, Hohm and Townsend. We find that the theory passes remarkably highly nontrivial consistency checks at the nonlinear level. In particular, we show that: (1) In the decoupling limit of the theory, the interactions of the helicity-0 mode are described by a single cubic term -- the so-called cubic Galileon -- previously found in the context of the DGP model and in certain 4D massive gravities. (2) The conformal mode of the metric coincides with the helicity-0 mode in the decoupling limit. Away from this limit the nonlinear dynamics of the former is described by a certain generalization of Galileon interactions, which like the Galileons themselves have a well-posed Cauchy problem. (3) We give a non-perturbative argument based on the presence of additional symmetries that the full theory does not lead to any extra degrees of freedom, suggesting that a 3D analog of the 4D Boulware-Deser ghost is not present in this theory. Last but not least, we generalize "New Massive Gravity" and construct a class of 3D cubic order massive models that retain the above properties.Comment: 21 page

    Spin-2 spectrum of defect theories

    Get PDF
    We study spin-2 excitations in the background of the recently-discovered type-IIB solutions of D'Hoker et al. These are holographically-dual to defect conformal field theories, and they are also of interest in the context of the Karch-Randall proposal for a string-theory embedding of localized gravity. We first generalize an argument by Csaki et al to show that for any solution with four-dimensional anti-de Sitter, Poincare or de Sitter invariance the spin-2 excitations obey the massless scalar wave equation in ten dimensions. For the interface solutions at hand this reduces to a Laplace-Beltrami equation on a Riemann surface with disk topology, and in the simplest case of the supersymmetric Janus solution it further reduces to an ordinary differential equation known as Heun's equation. We solve this equation numerically, and exhibit the spectrum as a function of the dilaton-jump parameter Δϕ\Delta\phi. In the limit of large Δϕ\Delta\phi a nearly-flat linear-dilaton dimension grows large, and the Janus geometry becomes effectively five-dimensional. We also discuss the difficulties of localizing four-dimensional gravity in the more general backgrounds with NS5-brane or D5-brane charge, which will be analyzed in detail in a companion paper.Comment: 41 pages, 6 figure

    Multigravity in six dimensions: Generating bounces with flat positive tension branes

    Get PDF
    We present a generalization of the five dimensional multigravity models to six dimensions. The key characteristic of these constructions is that that we obtain solutions which do not have any negative tension branes while at the same time the branes are kept flat. This is due to the fact that in six dimensions the internal space is not trivial and its curvature allows bounce configurations with the above feature. These constructions give for the first time a theoretically and phenomenologically viable realization of multigravity.Comment: 27 pages, 13 figures, typos correcte

    Pesticide Leaching from Agricultural Fields with Ridges and Furrows

    Get PDF
    In the evaluation of the risk of pesticide leaching to groundwater, the soil surface is usually assumed to be level, although important crops like potato are grown on ridges. A fraction of the water from rainfall and sprinkler irrigation may flow along the soil surface from the ridges to the furrows, thus bringing about an extra load of water and pesticide on the furrow soil. A survey of the literature reveals that surface-runoff from ridges to furrows is a well-known phenomenon but that hardly any data are available on the quantities of water and pesticide involved. On the basis of a field experiment with additional sprinkler irrigation, computer simulations were carried out with the Pesticide Emission Assessment at Regional and Local scales model for separate ridge and furrow systems in a humic sandy potato field. Breakthrough curves of bromide ion (as a tracer for water flow) and carbofuran (as example pesticide) were calculated for 1-m depth in the field. Bromide ion leached comparatively fast from the furrow system, while leaching from the ridge system was slower showing a maximum concentration of about half of that for the furrow system. Carbofuran breakthrough from the furrow system began about a month after application and increased steadily to substantial concentrations. Because the transport time of carbofuran in the ridge soil was much longer, no breakthrough occurred in the growing season. The maximum concentration of carbofuran leaching from the ridge–furrow field was computed to be a factor of six times as high as that computed for the corresponding level field. The study shows that the risk of leaching of pesticides via the furrow soil can be substantially higher than that via the corresponding level field soil

    Categorizing Different Approaches to the Cosmological Constant Problem

    Full text link
    We have found that proposals addressing the old cosmological constant problem come in various categories. The aim of this paper is to identify as many different, credible mechanisms as possible and to provide them with a code for future reference. We find that they all can be classified into five different schemes of which we indicate the advantages and drawbacks. Besides, we add a new approach based on a symmetry principle mapping real to imaginary spacetime.Comment: updated version, accepted for publicatio

    Effective Lagrangians and Universality Classes of Nonlinear Bigravity

    Full text link
    We discuss the fully non-linear formulation of multigravity. The concept of universality classes of effective Lagrangians describing bigravity, which is the simplest form of multigravity, is introduced. We show that non-linear multigravity theories can naturally arise in several different physical contexts: brane configurations, certain Kaluza-Klein reductions and some non-commutative geometry models. The formal and phenomenological aspects of multigravity (including the problems linked to the linearized theory of massive gravitons) are briefly discussed.Comment: 41 pages, 4 Figures, final version to be published in Phys.Rev.
    • 

    corecore