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Abstract 
 In [Houk, 2005], the “Agents of the mind” idea is 
proposed as a suitable framework for studying the dynamics 
and complexities of mind. “Agents of the mind” is inspired 
by the society of mind idea of Marvin Minsky [Minsky, 
1988]. According to the society of mind, the mind is a 
complex system. The mind agents are elusive to identify. 
The mind is proposed as a hierarchy of agents. The higher 
hierarchy agents compose of lower hierarchy agents. Higher 
level agents do not command lower level agents but they 
basically trigger or invoke lower level agents. Agents are 
functional entities and they interact with each other. One 
important part of the society of mind idea is that agents at 
the lowest level are the real workers. Higher level 
functionalities emerge as a result of the functioning of the 
lower level agents and the interactions between them.  
 In agents of the mind project, computational distributed 
processing modules (DPM) are posited for corresponding 
anatomically defined assemblies and they are referred to as 
the agents of the mind. M1 is an anatomical area in the 
cerebral cortex which produces voluntary commands via its 
loops through basal ganglia and cerebellum. M1-DPM is a 
computational distributed processing module which 
simulates M1 area and its loops for voluntary commands 
production. We use Netlogo 3.1 agent-based programming 
environment to illuminate the properties of mind. In this 
work, the attractor network in cerebellar loop and the effects 
of Purkinje cell on production of motor commands have 
been studied. The results are reported in this paper. 
 
 
1. INTRODUCTION 
 Houk 2005 posits a framework where questions about 
how the mind thinks and controls actions may involve 
focusing on “networks of anatomically defined assemblies” 
that have been called distributed processing modules. This  
 
 
 
 

position firstly came after a series of experiments on 
functional imaging during a serial order recall task [Houk et 
al., 2005]. These experiments were made to study human 
brain activity during the selection of actions from working 
memory. Secondly, microelectrode recordings from 
monkeys trained in a step-tracking task were used to study 
natural selection of corrective sub movements. The DPM-
based model assisted in the interpretation of the collected 
data. Thus, such a framework is suitable for focusing on 
questions about how the mind works and controls actions. 
 DPMs are posited as agents of the mind. That means 
that DPMs can be at different levels of hierarchy and higher 
level DPMs invoke lower level DPMs. The real workers are 
the lowest level DPMs. DPMs are composed of loops 
through the basal ganglia and through the cerebellum. The 
basal ganglia loop is involved in pattern classification and 
action selection whereas cerebellum loop is involved in 
refining actions. In basal ganglia loop, basal ganglia  
receives patterns from cerebral cortex and it can receive 
several patterns for a particular task from cerebral cortex 
(Figure 1). It has to make a decision between those patterns 
or sometimes one pattern can be strong and initiate its own 
selection. The decided/selected pattern is further sent to the 
cerebellum loop for refinement and amplification. In Figure 
1, a hierarchy of DPMs is shown. In the figure, the cortical-
cortical connections between levels are also shown. In the 
hierarchy, at the lowest level, M1-DPM produces the 
voluntary motor commands and these commands are sent to 
the muscles. In the human brain, it is suggested that there 
can be on the order of 100 DPMs.   
 Following example can be given to explain what a 
DPM module could do in practice. Imagine that there is a 
cup on a table and a person wants to reach the cup (Figure   
2). There is an occluding object in front of the cup. There 
are many paths towards the cup from where the person’s 
hand is although the occluding object is putting constraints 
on the accessibility of the cup or the number of paths. Then, 
the cerebral cortex can visualize two approximate paths and 
send them to the basal ganglia for selection of one of them. 
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 The basal ganglia, in addition and depending on the 
context, might also be reinforced to select the shortest one 
of the possible paths conveyed by the cerebral cortex to it. 
In that situation, the shortest path will be discovered and 
sent to cerebellum because of the contextual constraint 
posed by cerebral cortex. Cerebellum, then, estimates the 
tiny motions from the hand to the cup. Figure 3 shows the 
pattern selection, amplification and refinement process in 
generating a voluntary movement. The responsible DPM is 
the M1-DPM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
2. M1 CORTICAL-CEREBELLAR LOOP 
 M1 cortical-cerebellar loop may especially be important 
in regulating the intensity and the duration of voluntary 
commands. Cortical-cerebellar loop forms the loop between 
the cerebral cortex and cerebellum. It has macroscopic and 

path1 

cup 
occluding 
object 

path2 

Figure 3. The pattern selection, amplification and refinement
process. 

Figure 1. DPMs communicate with each other through cortical-cortical connections. 

Figure 2. Two possible paths that cerebral cortex selects 
and sends to basal ganglia for deciding on one. 
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microscopic components. In this project, we have 
implemented a microscopic component of an M1 cortical- 
cerebellar loop. The nature of macroscopic and microscopic 
loops will be explained in the next section. 
 

 
 
 
 
 
3. CEREBELLAR SIGNAL PROCESSING SCHEME 
 In Figure 5, one macroscopic module of cortical-
cerebellar loop is given. There are two main divisions of the 
cerebellum: the cerebellar cortex and the cerebellar nuclei 
[Houk and Miller 2001]. Cerebellar cortex composes of a 
granular layer and a molecular layer. Mossy fiber inputs are 
projected into an even larger number of granular cells. The 
axons of granule cells then ascend into the molecular layer 
to form parallel fibers. The latter transmit diverge state of 
information to Purkinje cells (PCs) to detect and classify 
many different patterns of state-relevant input that may 
occur. The cerebral cortex sends state information to the 
granular layer of cerebellar cortex. 
 The results of each PC’s processing are then transmitted 
to a small cluster of neurons in the cerebellar nucleus, a 
projection that is exclusively inhibitory. The additional roles 
of a Purkinje cell are: 
 
 Purkinje cell controls intensity, velocity and duration of 
a movement. 
 Bi-stability of PC: It acts like a switch that can turn on 
or off a motor command with also the help of a sensory cue.  
PC inhibits a closed loop between a cerebellar nuclei cell 
and a motor cortical cell where the loop is called an attractor 
network. 
 
 Current work simulates the sequence of initiation of an 
upward tiny motion by simulating a microscopic module 
(Figure 6).  
 

 
 
 
 
 
 
 

 
 
 
 
 
4. THE STATES OF THE ATTRACTOR NETWORK 
 The attractor network shown in Figure 6 has two stable 
states that it can be drawn to depending on the firing rate of 
the Purkinje cell and the strength of an input signal into the 
motor cortical neuron in the form of a sensory cue. High 
state occurs when there is sustained maximum positive 
feedback in the attractor network and a movement is 
initiated. Low state occurs when there is not any positive  
 
 
 
 

Figure 4. M1 cortical-cerebellar loop. 

Figure 6. One microscopic module.

Figure 5. One macroscopic module.



feedback in the attractor network and the movement stops. 
 In order to initiate a movement command, the following 
conditions should be met: 
 
 Purkinje cell inhibition is off in preparation for 
movement.  
 Sensory cue is applied into the motor cortical neuron to 
initiate a movement command.  
 When the attractor network moves into the high state, a 
constant velocity movement is commanded. 
 
Figure 7 shows the signaling for a movement command 
initiation. 
 
 
 
 
 
 
 
 
 
 
 
 
5. THE COMPUTATIONAL MICROSCOPIC 

MODEL IN NETLOGO 3.1 
 Netlogo 3.1 agent based modeling environment has 
been used for producing the computational model. In Figure 
8, a microscopic model which consists of an attractor 
network between a motor cortical neuron (M1) and a 
cerebellar nuclear neuron (CN), the bias input (bb) to M1, 
and the Purkinje cell input (PC) is shown.  
 
 

     
 
 
 
 
 The non-linear equations which define the behavior of  
 

the cells involved in the attractor network circuitry are 
formulated depending on the data collected in human [Yuen 
et al., 1995] and animal study experiments [Sarrafizadeh et 
al., 1996; Holdefer et al., 2000; Ekerot et al., 1981]. 
Following variables are used in the equations of the 
computational microscopic module: 
 
m:  motor cortical neuron 
n:  nuclear neuron 
Rm: the firing rate of neuron m 
Vm: the membrane potential of neuron m 
Rn: the firing rate of neuron n 
Vn: the membrane potential of neuron n 
T: constant time factor 
 f: activation function 
w: the synaptic weight between m and n 
p: the firing rate of Purkinje cell 
bb: bias input to the motor cortical neuron 
 
 Following are the non-linear dynamical equations of the 
model: 
 
T d(Vm)/dt + Vm = wRn – bb   (1) 
Rm = f(Vm)     (2) 
T d(Vn)/dt + Vn = wRm – p   (3) 
Rn = f(Vn)     (4) 
 
 The attractor network has two states that it can go into: 
high state and low state. These states are represented in two 
dimensions. Vn is the x-direction and Vm is the y-direction 
in the two dimensional space. The network has an initial 
(Vm, Vn) state. This can correspond to imagining a particle 
in the attractor network at initial coordinates (Vm, Vn). The 
particle will be under d(Vm)/dt  and d(Vn)/dt forces in y and 
x directions respectively and will move. The x and y forces 
are calculated by using the following equations derived 
from the four equations given above where f is a sigmoid 
activation function: 
 
d(Vm)/dt =  (wRn – bb – Vm ) / T   (5) 
 
d(Vn)/dt  =  (wRm – p – Vn) / T   (6) 
 
Rm = 1 / (1 + exp(- ycor)) and Rn 1 / ( 1 + exp(- xcor)) 
       (7) 
 
 Changing the value of p will change the state of the 
attractor network and hence the position of the particle in 
the space. Figure 9 shows the vector fields and the fixed 
points of an attractor network where values of p, bb and w 
are 5.0, 5.0 and 10.00 respectively.  These values are chosen 
such that two states of the attractor network mentioned 
above can be obtained using the given sigmoid function.  
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Figure 8. One computational microscopic module.

Figure 7. Signaling for a movement command initiation.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9. Vector fields and fixed points of an attractor network. 

Figure 10. Vector fields and fixed points of an attractor network. 



High state of the attractor network happens at the upper 
fixed point (rightmost full yellow circle). Low state happens 
at the lower fixed point (left most full yellow circle). Middle 
fixed point (middle empty yellow circle) represents the 
threshold between high and low state. With other words, 
sufficient intensity appears over threshold, maximum 
intensity occurs at the upper fixed point and lowest intensity 
occurs at the lower fixed point. Figure 10 shows the 
conditions when an attractor network has intensities over 
and below a threshold. If there are enough forces, a particle 
in the vector fields moves to the high fixed point. 
Otherwise, a particle moves to the lower fixed point. The 
initial position of the particle can vary.  
 Figure 11 shows the time course for initiation of a 
motor command. Firstly, the Purkinje cell discharge starts. 
It takes sometime for the attractor network to reach the high 
state. The attractor network states at the high state 
approximately between 100 and 1000 ms. Then, the 
Purkinje cell charge (firing) starts and the attractor network  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

state returns back to the low state. The attractor network 
stays at the low state. This sequence produces the signaling 
shown in Figure 7.  
 
6. CONCLUSIONS 
 In this work, a microscopic module of an M1-DPM has 
been implemented using the non-linear equations given 
above and a sigmoid transfer function within the scope of 
the agent of the mind idea. The simulations produce the 
same signaling that occurs in an attractor network between a 
nuclear neuron and a motor cortical neuron for different 
Purkinje cell values.  The produced signaling imitates a tiny 
motion upwards in a complete motion such as reaching a 
glass cup. The future work will simulate motion in other 
directions (down, right and left). Netlogo 3.1 is a suitable 
environment for producing the micro and macro behaviors 
of hundreds of DPMs for a complete motion task.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Vector fields and fixed points of an attractor network. 
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Abbreviations/ Acronyms 
DPM: Computational Distributed Processing Module 
M1:  Anatomical area in the cerebral cortex which 

produces voluntary commands via its loops 
through basal ganglia and cerebellum.  

M1-DPM: Computational Distributed Processing Module 
for M1 area 

PC:  Purkinje cell 
CN:  Cerebellar Nucleus 
OP:  Output Population 
MF:  Mossy Fiber 
CF:  Climbing Fiber 
p:  the firing rate of Purkinje cell 
bb:  bias input to the motor cortical neuron 
m:   motor cortical neuron 
n:   nuclear neuron 
Rm: the firing rate of neuron m 
Vm: the membrane potential of neuron m 
Rn:  the firing rate of neuron n 
Vn:  the membrane potential of neuron n 
T:  constant time factor 
 f:  activation function 
w:  the synaptic weight between m and n 

Acknowledgements 
 We would like to thank Dr. Bill Rand from 
Northwestern University for his help with using the Netlogo 
3.1 agent-based programming environment. We also would 
like to thank Ender Yildirim for his help in editing the 
pictures in the original draft into their final versions.  
 
Biography 
 Sule Yildirim is an associate professor and head of 
computer science department in Hedmark University 
College, Norway. She is teaching artificial intelligence and 
computer science courses at the undergraduate and graduate 
level and supervising several master students in the field of 
artificial intelligence. She has been in a program committee 
for and co-chaired several computer science/artificial 
intelligence relevant conferences. She received her PhD 
from Ege University, Turkey in 2002. She worked as a 
postdoctoral fellow and assistant professor in Intelligent 
Systems Department in Norwegian University of Science 
and Technology after graduation. She had one year visiting 
scholar position in USA before these positions. She has also 
worked in industry as a computer engineer before her 
research positions. She has/had research 
collaborations/project funding applications with researches 
from institutions in UK, USA and Sweden. She is author/co-
author of some scientific publications. She is both interested 
in computational modeling of the complexities of human 
mind and building intelligent systems that are support to 
humans. Her research work spans a wide variety of topics in 
Artificial Intelligence such as planning, re-planning, 
learning and adaptive agents in unstructured and uncertain 
environments, computational models of high level thinking 
(learning of concepts and conceptual associations), 
modeling of natural language parsing, learning of threat 
detection scenarios in real-time video data, computer games 
and computational neuroscience. 
 
 Gregory Dam is currently a Neuroscience graduate 
student at Northwestern University. His research interests 
are in the areas of computational neuroscience, machine 
learning and psychophysics. 

 
 James (Jim) Houk originally studied electrical 
engineering and received an MS degree from MIT in 1963, 
working with Prof. Larry Stark on engineering models of 
the movement control system. He transferred to Harvard to 
study neurophysiology, under the mentorship of Prof. 
Elwood Henneman, and conducted his Ph.D. dissertation on 
Golgi tendon organs. He then did a postdoctoral fellowship 
in France, studying muscle spindle receptors with Prof. 
Yves LaPort. Back in Boston as an Assistant Professor at 
Harvard Medical School, he studied the mechanisms of 
neuromuscular control in the spinal cord. As Associate 
Professor at the Johns Hopkins Medical School, he began to 



work on brain function. He learned the techniques for 
recording from single nerve cells in behaving monkeys from 
Vernon Mountcastle. After 23 years as chair of the 
department of physiology at Northwestern University 
Medical School, he decided to step down in 2001 and is 
now concentrating on multimodal approaches to studying 
the signal processing operations of the brain. He is 
attempting to understand how the nonlinear dynamics of 
microscopic modules in the brain give rise to the unique 
computational properties of distributed processing modules 
(DPMs). DPMs are the macroscopic modules described in 
Houk (2005) that connect individual areas of the cerebral 
cortex with the basal ganglia and with the cerebellum. He is 
beginning to explore the emergent properties of networks of 
DPMs and how they give rise to language and thinking. 
Houk is also interested in brain processes that underlie 
Parkinson’s disease and in the etiology of schizophrenia.  
: 
 


