11,773 research outputs found

    Thrombotic variables and risk of idiopathic venous thromboembolism in women aged 45-64 years - Relationships to hormone replacement therapy

    Get PDF
    Hormone replacement therapy (HRT) has been shown to increase the relative risk of idiopathic venous thromboembolism (VTE) about threefold in several observational studies and one randomised controlled trial. Whether or not this relative risk is higher in women with underlying thrombophilia phenotypes, such as activated protein C (APC) resistance, is unknown. We therefore restudied the participants in a case-control study of the relationship between the use of HRT and the occurrence of idiopathic VTE in women aged 45-64 years. After protocol exclusions, 66 of the cases in the original study and 163 of the controls were studied. Twenty haematological variables relevant to risk of VTE were analysed, including thrombotic states defined from the literature. The relative risk of VTE showed significant associations with APC resistance (OR 4.06; 95% CI 1.62, 10.21); low antithrombin (3.33; 1.15, 9.65) or protein C (2.93; 1.06, 8.14); and high coagulation factor IX (2.34: 1.26, 1.35), or fibrin D-dimer (3.84; 1.99, 7.32). HRT use increased the risk of VTE in women without any of these thrombotic static; (OR 4.09; 95% CI 1.26, 13.30). A similar effect of HRT use on the relative risk of VTE was also found in women with prothrombotic states. Thus for example, the combination of HRT use and APC resistance increased the risk of VTE about 13-fold compared with women of similar age without either APC resistance or HRT use (OR 13.27; 95%, CI 4.30, 40.97). We conclude that the combination of HRT use and thrombophilias (especially if multiple) increases the relative risk of VTE substantially; hence women known to have thrombophilias (especially if multiple) should be counselled about this increased risk prior to prescription of HRT. However. HRT increases the risk of VTE about fourfold even in women without any thrombotic abnormalities: possible causes are discussed

    Early Outcomes for Programs and Families in Children's Futures

    Get PDF
    Assesses the programmatic achievements and outcomes for families in the first five years of a community change initiative providing an array of social services. Discusses lessons learned and issues of cost, partnership development, and sustainability

    Direct Determinations of the Redshift Behavior of the Pressure, Energy Density, and Equation of State of the Dark Energy and the Acceleration of the Universe

    Full text link
    One of the goals of current cosmological studies is the determination of the expansion and acceleration rates of the universe as functions of redshift, and the determination of the properties of the dark energy that can explain these observations. Here the expansion and acceleration rates are determined directly from the data, without the need for the specification of a theory of gravity, and without adopting an a priori parameterization of the form or redshift evolution of the dark energy. We use the latest set of distances to SN standard candles from Riess et al. (2004), supplemented by data on radio galaxy standard ruler sizes, as described by Daly and Djorgovski (2003, 2004). We find that the universe transitions from acceleration to deceleration at a redshift of about 0.4. The standard "concordance model" provides a reasonably good fit to the dimensionless expansion rate as a function of redshift, though it fits the dimensionless acceleration rate as a function of redshift less well. The expansion and acceleration rates are then combined with a theory of gravity to determine the pressure, energy density, and equation of state of the dark energy as functions of redshift. Adopting General Relativity as the correct theory of gravity, the redshift trends for the pressure, energy density, and equation of state of the dark energy out to redshifts of about one are determined, and are found to be generally consistent with the concordance model.Comment: 8 pages, 5 figures. Invited presentation at Coral Gables 200

    Agriculture, meteorology and water quality in Ireland: a regional evaluation of pressures and pathways of nutrient loss to water

    Get PDF
    peer-reviewedThe main environmental impact of Irish agriculture on surface and ground water quality is the potential transfer of nutrients to water. Soil water dynamics mediate the transport of nutrients to water, and these dynamics in turn depend on agro-meteorological conditions, which show large variations between regions, seasons and years. In this paper we quantify and map the spatio-temporal variability of agro-meteorological factors that control nutrient pressures and pathways of nutrient loss. Subsequently, we evaluate their impact on the water quality of Irish rivers. For nitrogen, pressure and pathways factors coincide in eastern and southern areas, which is reflected in higher nitrate levels of the rivers in these regions. For phosphorus, pathway factors are most pronounced in north-western parts of the country. In south-eastern parts, high pressure factors result in reduced biological water quality. These regional differences require that farm practices be customised to reflect the local risk of nutrient loss to water. Where pathways for phosphorus loss are present almost year-round—as is the case in most of the north-western part of the country—build-up of pressures should be prevented, or ameliorated where already high. In south-eastern areas, spatio-temporal coincidence of nutrient pressures and pathways should be prevented, which poses challenges to grassland management

    Ontogeny of sex differences in response to novel objects from adolescence to adulthood in lister-hooded rats

    Get PDF
    In humans, novelty-seeking behavior peaks in adolescence and is higher in males than females. Relatively, little information is available regarding age and sex differences in response to novelty in rodents. In this study, male and female Lister-hooded rats were tested at early adolescence (postnatal day, pnd, 28), mid-adolescence (pnd 40), or early adulthood (pnd 80) in a novel object recognition task (n = 12 males/females per age group). Males displayed a higher preference for the novel object than females at mid-adolescence, with no sex difference at early adolescence. Adult females interacted with the novel object more than adult males, but not when side biases were removed. Sex differences at mid-adolescence were not found in other measures, suggesting that the difference at this age was specific to situations involving choice of novelty. The results are considered in the context of age- and sex-dependent interactions between gonadal hormones and the dopamine system. © 2011 Wiley Periodicals, Inc. Dev Psychobiol 53:670–676, 2011

    Global MHD simulation of flux transfer events at the high-latitude magnetopause observed by the cluster spacecraft and the SuperDARN radar system

    Get PDF
    A global magnetohydrodynamic numerical simulation is used to study the large-scale structure and formation location of flux transfer events (FTEs) in synergy with in situ spacecraft and ground-based observations. During the main period of interest on the 14 February 2001 from 0930 to 1100 UT the Cluster spacecraft were approaching the Northern Hemisphere high-latitude magnetopause in the postnoon sector on an outbound trajectory. Throughout this period the magnetic field, electron, and ion sensors on board Cluster observed characteristic signatures of FTEs. A few minutes delayed to these observations the Super Dual Auroral Radar Network (SuperDARN) system indicated flow disturbances in the conjugate ionospheres. These “two-point” observations on the ground and in space were closely correlated and were caused by ongoing unsteady reconnection in the vicinity of the spacecraft. The three-dimensional structures and dynamics of the observed FTEs and the associated reconnection sites are studied by using the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) MHD code in combination with a simple open flux tube motion model (Cooling). Using these two models the spatial and temporal evolution of the FTEs is estimated. The models fill the gaps left by measurements and allow a “point-to-point” mapping between the instruments in order to investigate the global structure of the phenomenon. The modeled results presented are in good correlation with previous theoretical and observational studies addressing individual features of FTEs
    corecore