406 research outputs found
Butterfly diagram of a Sun-like star observed using asteroseismology
Stellar magnetic fields are poorly understood but are known to be important
for stellar evolution and exoplanet habitability. They drive stellar activity,
which is the main observational constraint on theoretical models for magnetic
field generation and evolution. Starspots are the main manifestation of the
magnetic fields at the stellar surface. In this study we measure the variation
of their latitude with time, called a butterfly diagram in the solar case, for
the solar analogue HD 173701 (KIC 8006161). To that effect, we use Kepler data,
to combine starspot rotation rates at different epochs and the
asteroseismically determined latitudinal variation of the stellar rotation
rates. We observe a clear variation of the latitude of the starspots. It is the
first time such a diagram is constructed using asteroseismic data.Comment: 8 pages, 4 figures, accepted in A&A Letter
Asteroseismic detection of latitudinal differential rotation in 13 Sun-like stars
The differentially rotating outer layers of stars are thought to play a role
in driving their magnetic activity, but the underlying mechanisms that generate
and sustain differential rotation are poorly understood. We report the
measurement of latitudinal differential rotation in the convection zones of 40
Sun-like stars using asteroseismology. For the most significant detections, the
stars' equators rotate approximately twice as fast as their mid-latitudes. The
latitudinal shear inferred from asteroseismology is much larger than
predictions from numerical simulations.Comment: 45 pages, 11 figures, 4 tables, published in Scienc
Sounding stellar cycles with Kepler - II. Ground-based observations
We have monitored 20 Sun-like stars in the Kepler field-of-view for excess
flux with the FIES spectrograph on the Nordic Optical Telescope since the
launch of Kepler spacecraft in 2009. These 20 stars were selected based on
their asteroseismic properties to sample the parameter space (effective
temperature, surface gravity, activity level etc.) around the Sun. Though the
ultimate goal is to improve stellar dynamo models, we focus the present paper
on the combination of space-based and ground-based observations can be used to
test the age-rotation-activity relations.
In this paper we describe the considerations behind the selection of these 20
Sun-like stars and present an initial asteroseismic analysis, which includes
stellar age estimates. We also describe the observations from the Nordic
Optical Telescope and present mean values of measured excess fluxes. These
measurements are combined with estimates of the rotation periods obtained from
a simple analysis of the modulation in photometric observations from Kepler
caused by starspots, and asteroseismic determinations of stellar ages, to test
relations between between age, rotation and activity.Comment: Accepted for publication in MNRA
Metabolic features and glucocorticoid-induced comorbidities in patients with giant cell arteritis and polymyalgia rheumatica in a Dutch and Danish cohort
OBJECTIVES: Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are age-associated inflammatory diseases that frequently overlap. Both diseases require long-term treatment with glucocorticoids (GCs), often associated with comorbidities. Previous population-based cohort studies reported that an unhealthier metabolic profile might prevent the development of GCA. Here, we report metabolic features before start of treatment and during treatment in patients with GCA and PMR. METHODS: In the Dutch GCA/PMR/SENEX (GPS) cohort, we analysed metabolic features and prevalence of comorbidities (type 2 diabetes, hypercholesterolaemia, hypertension, obesity and cataract) in treatment-naïve patients with GCA (n=50) and PMR (n=42), and compared those with the population-based Lifelines cohort (n=91). To compare our findings in the GPS cohort, we included data from patients with GCA (n=52) and PMR (n=25) from the Aarhus cohort. Laboratory measurements, comorbidities and GC use were recorded for up to 5 years in the GPS cohort. RESULTS: Glycated haemoglobin levels tended to be higher in treatment-naïve patients with GCA, whereas high-density lipoprotein, low-density lipoprotein and cholesterol levels were lower compared with the Lifelines population. Data from the Aarhus cohort were aligned with the findings obtained in the GPS cohort. Presence of comorbidities at baseline did not predict long-term GC requirement. The incidence of diabetes, obesity and cataract among patients with GCA increased upon initiation of GC treatment. CONCLUSION: Data from the GCA and PMR cohorts imply a metabolic dysregulation in treatment-naïve patients with GCA, but not in patients with PMR. Treatment with GCs led to the rise of comorbidities and an unhealthier metabolic profile, stressing the need for prednisone-sparing targeted treatment in these vulnerable patients
The identification and functional annotation of RNA structures conserved in vertebrates
Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization, and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for conserved RNA structures (CRSs), leveraging structure-based, rather than sequence-based, alignments. After careful correction for sequence identity and GC content, we predict ∼516,000 human genomic regions containing CRSs. We find that a substantial fraction of human–mouse CRS regions (1) colocalize consistently with binding sites of the same RNA binding proteins (RBPs) or (2) are transcribed in corresponding tissues. Additionally, a CaptureSeq experiment revealed expression of many of our CRS regions in human fetal brain, including 662 novel ones. For selected human and mouse candidate pairs, qRT-PCR and in vitro RNA structure probing supported both shared expression and shared structure despite low abundance and low sequence identity. About 30,000 CRS regions are located near coding or long noncoding RNA genes or within enhancers. Structured (CRS overlapping) enhancer RNAs and extended 3′ ends have significantly increased expression levels over their nonstructured counterparts. Our findings of transcribed uncharacterized regulatory regions that contain CRSs support their RNA-mediated functionality.</jats:p
Kepler White Paper: Asteroseismology of Solar-Like Oscillators in a 2-Wheel Mission
We comment on the potential for continuing asteroseismology of solar-type and
red-giant stars in a 2-wheel Kepler Mission. Our main conclusion is that by
targeting stars in the ecliptic it should be possible to perform high-quality
asteroseismology, as long as favorable scenarios for 2-wheel pointing
performance are met. Targeting the ecliptic would potentially facilitate unique
science that was not possible in the nominal Mission, notably from the study of
clusters that are significantly brighter than those in the Kepler field. Our
conclusions are based on predictions of 2-wheel observations made by a space
photometry simulator, with information provided by the Kepler Project used as
input to describe the degraded pointing scenarios. We find that elevated levels
of frequency-dependent noise, consistent with the above scenarios, would have a
significant negative impact on our ability to continue asteroseismic studies of
solar-like oscillators in the Kepler field. However, the situation may be much
more optimistic for observations in the ecliptic, provided that pointing resets
of the spacecraft during regular desaturations of the two functioning reaction
wheels are accurate at the < 1 arcsec level. This would make it possible to
apply a post-hoc analysis that would recover most of the lost photometric
precision. Without this post-hoc correction---and the accurate re-pointing it
requires---the performance would probably be as poor as in the Kepler-field
case. Critical to our conclusions for both fields is the assumed level of
pointing noise (in the short-term jitter and the longer-term drift). We suggest
that further tests will be needed to clarify our results once more detail and
data on the expected pointing performance becomes available, and we offer our
assistance in this work.Comment: NASA Kepler Mission White Paper; 10 pages, 2 figure
Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at GeV
The BRAHMS collaboration has measured transverse momentum spectra of pions,
kaons, protons and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at
GeV. As the collisions become more central the collective
radial flow increases while the temperature of kinetic freeze-out decreases.
The temperature is lower and the radial flow weaker at forward rapidity. Pion
and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are
suppressed for central collisions relative to scaled collisions. This
suppression, which increases as the collisions become more central is
consistent with jet quenching models and is also present with comparable
magnitude at forward rapidity. At such rapidities initial state effects may
also be present and persistence of the meson suppression to high rapidity may
reflect a combination of jet quenching and nuclear shadowing. The ratio of
protons to mesons increases as the collisions become more central and is
largest at forward rapidities.Comment: 19 pages, 11 figures and 6 table
- …