257 research outputs found

    Local Government Amalgamation in Queensland: A Case Study of the Moreton Bay Regional Council

    Get PDF
    Local government in Australia has been the subject of significant reform since the early 1990s. New local government legislation has been introduced, the types of services provided by councils have changed, and local government financial sustainability has been the subject of debate at both state and national levels. Whilst these changes have been significant, it has been structural reform of local government that has transformed the political landscape at the local level through involuntary amalgamations. This thesis reviews the various policy approaches to local government reform in Australia, with a particular focus on forced amalgamation as a method of structural reform. State and territory governments appear to be inextricably drawn to the idea that 'bigger is better' in local government. This thesis considers the merits of this proposition from theoretical and empirical viewpoints, and critically evaluates the Queensland experience of involuntary amalgamation in 2008

    A novel screening system improves genetic correction by internal exon replacement

    Get PDF
    Trans-splicing is a powerful approach to reprogram the genome. It can be used to replace 5′, 3′ or internal exons. The latter approach has been characterized by low efficiency, as the requirements to promote internal trans-splicing are largely uncharacterized. The trans-splicing process is induced by engineered ‘RNA trans-splicing molecules’ (RTMs), which target a selected pre-mRNA to be reprogrammed via two complementary binding domains. To facilitate the development of more efficient RTMs for therapeutic applications we constructed a novel fluorescence based screening system. We incorporated exon 52 of the COL17A1 gene into a GFP-based cassette system as the target exon. This exon is mutated in many patients with the devastating skin blistering disease epidermolysis bullosa. In a double transfection assay we were able to rapidly identify optimal binding domains targeted to sequences in the surrounding introns 51 and 52. The ability to replace exon 52 was then evaluated in a more endogenous context using a target containing COL17A1 exon 51–intron 51–exon 52–intron 52–exon 53. Two selected RTMs produced significantly higher levels of GFP expression in up to 61% assayed cells. This novel approach allows for rapid identification of efficient RTMs for internal exon replacement

    Effect of cadmium on cytosine hydroxymethylation in gastropod hepatopancreas

    Get PDF
    5-Hydroxymethylcytosine (5hmC) is an important, yet poorly understood epigenetic DNA modification, especially in invertebrates. Aberrant genome-wide 5hmC levels have been associated with cadmium (Cd) exposure in humans, but such information is lacking for invertebrate bioindicators. Here, we aimed to determine whether this epigenetic mark is present in DNA of the hepatopancreas of the land snail Cantareus aspersus and is responsive to Cd exposure. Adult snails were reared under laboratory conditions and exposed to graded amounts of dietary cadmium for 14 days. Weight gain was used as a sublethal endpoint, whereas survival as a lethal endpoint. Our results are the first to provide evidence for the presence of 5hmC in DNA of terrestrial mollusks; 5hmC levels are generally low with the measured values falling below 0.03%. This is also the first study to investigate the interplay of Cd with DNA hydroxymethylation levels in a non-human animal study system. Cadmium retention in the hepatopancreas of C. aspersus increased from a dietary Cd dose of 1 milligram per kilogram dry weight (mg/kg d. wt). For the same treatment, we identified the only significant elevation in percentage of samples with detectable 5hmC levels despite the lack of significant mortalities and changes in weight gain among treatment groups. These findings indicate that 5hmC is an epigenetic mark that may be responsive to Cd exposure, thereby opening a new aspect to invertebrate environmental epigenetics

    High Levels of Sediment Contamination Have Little Influence on Estuarine Beach Fish Communities

    Get PDF
    While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination

    Microwave assisted solvent free synthesis of 1,3-diphenylpropenones

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>1,3-Diphenylpropenones (chalcones) are well known for their diverse array of bioactivities. Hydroxyl group substituted chalcones are the main precursor in the synthesis of flavonoids. Till date various methods have been developed for the synthesis of these very interesting molecules. Continuing our efforts for the development of simple, eco-friendly and cost-effective methodologies, we report here a solvent free condensation of aryl ketones and aldehydes using iodine impregnated alumina under microwave activation. This new protocol has been applied to a variety of substituted aryl carbonyls with excellent yield of substituted 1,3-diphenylpropenones.</p> <p>Results</p> <p>Differently substituted chalcones were synthesized using iodine impregnated neutral alumina as catalyst in 79-95% yield in less than 2 minutes time under microwave activation without using any solvent. The reaction was studied under different catalytic conditions and it was found that molecular iodine supported over neutral alumina gives the best yield. The otherwise difficult single step condensation of hydroxy substituted aryl carbonyls is an attractive feature of this protocol to obtain polyhydroxychalcones in excellent yields. In order to find out the general applicability of this new endeavor it was successfully applied for the synthesis of 15 different chalcones including highly bioactive prenylated hydroxychalcone xanthohumol.</p> <p>Conclusion</p> <p>A new, simple and solvent free method was developed for the synthesis of substituted chalcones in environmentally benign way. The mild reaction conditions, easy work-up, clean reaction profiles render this approach as an interesting alternative to the existing methods.</p

    Metal Bioavailability in the Sava River Water

    Get PDF
    Metals present one of the major contamination problems for freshwater systems, such as the Sava River, due to their high toxicity, persistence, and tendency to accumulate in sediment and living organisms. The comprehensive assessment of the metal bioavailability in the Sava River encompassed the analyses of dissolved and DGT-labile metal species of nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the river water, as well as the evaluation of the accumulation of five metals (Cd, Cu, Fe, Mn, and Zn) in three organs (liver, gills, and gastrointestinal tissue) of the bioindicator organism, fish species European chub (Squalius cephalus L.).This survey was conducted mainly during the year 2006, in two sampling campaigns, in April/May and September, as periods representative for chub spawning and post-spawning. Additionally, metal concentrations were determined in the intestinal parasites acanthocephalans, which are known for their high affinity for metal accumulation. Metallothionein concentrations were also determined in three chub organs, as a commonly applied biomarker of metal exposure. Based on the metal concentrations in the river water, the Sava River was defined as weakly contaminated and mainly comparable with unpolluted rivers, which enabled the analyses of physiological variability of metal and metallothionein concentrations in the chub organs, as well as the establishment of their constitutive levels

    Spatially Explicit Analysis of Metal Transfer to Biota: Influence of Soil Contamination and Landscape

    Get PDF
    Concepts and developments for a new field in ecotoxicology, referred to as “landscape ecotoxicology,” were proposed in the 1990s; however, to date, few studies have been developed in this emergent field. In fact, there is a strong interest in developing this area, both for renewing the concepts and tools used in ecotoxicology as well as for responding to practical issues, such as risk assessment. The aim of this study was to investigate the spatial heterogeneity of metal bioaccumulation in animals in order to identify the role of spatially explicit factors, such as landscape as well as total and extractable metal concentrations in soils. Over a smelter-impacted area, we studied the accumulation of trace metals (TMs: Cd, Pb and Zn) in invertebrates (the grove snail Cepaea sp and the glass snail Oxychilus draparnaudi) and vertebrates (the bank vole Myodes glareolus and the greater white-toothed shrew Crocidura russula). Total and CaCl2-extractable concentrations of TMs were measured in soils from woody patches where the animals were captured. TM concentrations in animals exhibited a high spatial heterogeneity. They increased with soil pollution and were better explained by total rather than CaCl2-extractable TM concentrations, except in Cepaea sp. TM levels in animals and their variations along the pollution gradient were modulated by the landscape, and this influence was species and metal specific. Median soil metal concentrations (predicted by universal kriging) were calculated in buffers of increasing size and were related to bioaccumulation. The spatial scale at which TM concentrations in animals and soils showed the strongest correlations varied between metals, species and landscapes. The potential underlying mechanisms of landscape influence (community functioning, behaviour, etc.) are discussed. Present results highlight the need for the further development of landscape ecotoxicology and multi-scale approaches, which would enhance our understanding of pollutant transfer and effects in ecosystems

    Copper Induced Lysosomal Membrane Destabilisation in Haemolymph Cells of Mediterranean Green Crab (Carcinus aestuarii, Nardo, 1847) from the Narta Lagoon (Albania)

    Get PDF
    ABSTRACTDestabilisation of blood cell lysosomes in Mediterranean green crabCarcinus aestuarii was investigated using Neutral Red Retention Assay (NRRA). Crabs collected in Narta Lagoon, Vlora (Albania) during May 2014 were exposed in the laboratory to sub-lethal, environmentally realistic concentrations of copper. Neutral Red Retention Time (NRRT) and glucose concentration in haemolymph of animals were measured. The mean NRRT showed a significant reduction for the animals of the treatment group compared to the control one (from 118.6 ± 28.4 to 36.4 ± 10.48 min, p<0.05), indicating damage of lysosomal membrane. Haemolymph glucose concentration was significantly higher in the treatment group (from 37.8 ± 2.7 to 137.8.4 ± 16.2 mg/dL, p<0.05) than in control group, demonstrating the presence of stress on the animals. These results showed thatC. aestuarii could be used as a successful and reliable bioindicator for evaluating the exposure to contaminants in laboratory conditions. NRRA provides a successful tool for rapid assessment of heavy metal pollution effects on marine biota

    Hif1a inactivation rescues photoreceptor degeneration induced by a chronic hypoxia-like stress

    Get PDF
    Reduced choroidal blood flow and tissue changes in the ageing human eye impair oxygen delivery to photoreceptors and the retinal pigment epithelium. As a consequence, mild but chronic hypoxia may develop and disturb cell metabolism, function and ultimately survival, potentially contributing to retinal pathologies such as age-related macular degeneration (AMD). Here, we show that several hypoxia-inducible genes were expressed at higher levels in the aged human retina suggesting increased activity of hypoxia-inducible transcription factors (HIFs) during the physiological ageing process. To model chronically elevated HIF activity and investigate ensuing consequences for photoreceptors, we generated mice lacking von Hippel Lindau (VHL) protein in rods. This activated HIF transcription factors and led to a slowly progressing retinal degeneration in the ageing mouse retina. Importantly, this process depended mainly on HIF1 with only a minor contribution of HIF2. A gene therapy approach using AAV-mediated RNA interference through an anti-Hif1a shRNA significantly mitigated the degeneration suggesting a potential intervention strategy that may be applicable to human patients
    corecore