245 research outputs found

    Seasonal change in the daily timing of behaviour of the common vole, Microtus arvalis

    Get PDF
    1. Seasonal effects on daily activity patterns in the common vole were established by periodic trapping in the field and continuous year round recording of running wheel and freeding activity in cages exposed to natural meteorological conditions. 2. Trapping revealed decreased nocturnality in winter as compared to summer. This was paralelled by a winter reduction in both nocturnal wheel running and feeding time in cages. 3. Frequent trap checks revealed a 2 h rhythm in daytime catches in winter, not in summer. Cage feeding activity in daytime was always organized in c. 2 h intervals, but day-to-day variations in phase blurred the rhythm in summer in a summation of individual daily records. Thus both seasonal and short-term temporal patterns are consistent between field trappings and cage feeding records. 4. Variables associated with the seasonal change in daily pattern were: reproductive state (sexually active voles more nocturnal), age (juveniles more nocturnal), temperature (cold days: less nocturnal), food (indicated by feeding experiments), habitat structure (more nocturnal in habitat with underground tunnels). 5. Minor discrepancies between field trappings and cage feeding activity can be explained by assuming increased trappability of voles in winter. Cage wheel running is not predictive of field trapping patterns and is thought to reflect behavioral motivations not associated with feeding but with other activities (e.g., exploratory, escape, interactive behaviour) undetected by current methods, including radiotelemetry and passage-counting. 6. Winter decrease in nocturnality appears to involve a reduction in nocturnal non-feeding and feeding behaviour and is interpreted primarily as an adaptation to reduce energy expenditure in adverse but socially stable winter conditions.

    Bariatric surgery improves postprandial VLDL kinetics and restores insulin mediated regulation of hepatic VLDL production

    Get PDF
    Dyslipidemia in obesity results from excessive production and impaired clearance of triglyceride-rich (TG-rich) lipoproteins, which are particularly pronounced in the postprandial state. Here, we investigated the impact of Roux-en-Y gastric bypass (RYGB) surgery on postprandial VLDL1 and VLDL2 apoB and TG kinetics and their relationship with insulin-responsiveness indices. Morbidly obese patients without diabetes who were scheduled for RYGB surgery (n = 24) underwent a lipoprotein kinetics study during a mixed-meal test and a hyperinsulinemic-euglycemic clamp study before the surgery and 1 year later. A physiologically based computational model was developed to investigate the impact of RYGB surgery and plasma insulin on postprandial VLDL kinetics. After the surgery, VLDL1 apoB and TG production rates were significantly decreased, whereas VLDL2 apoB and TG production rates remained unchanged. The TG catabolic rate was increased in both VLDL1 and VLDL2 fractions, but only the VLDL2 apoB catabolic rate tended to increase. Furthermore, postsurgery VLDL1 apoB and TG production rates, but not those of VLDL2, were positively correlated with insulin resistance. Insulin-mediated stimulation of peripheral lipoprotein lipolysis was also improved after the surgery. In summary, RYGB resulted in reduced hepatic VLDL1 production that correlated with reduced insulin resistance, elevated VLDL2 clearance, and improved insulin sensitivity in lipoprotein lipolysis pathways.</p

    Nitrate contamination of drinking water: relationship with HPRT variant frequency in lymphocyte DNA and urinary excretion of N-nitrosamines.

    Get PDF
    We studied peripheral lymphocyte HPRT variant frequency and endogenous nitrosation in human populations exposed to various nitrate levels in their drinking water. Four test populations of women volunteers were compared. Low and medium tap water nitrate exposure groups (14 and 21 subjects) were using public water supplies with nitrate levels of 0.02 and 17.5 mg/l, respectively. Medium and high well water nitrate exposure groups (6 and 9 subjects) were using private water wells with mean nitrate levels of 25 and 135 mg/l, respectively. Higher nitrate intake by drinking water consumption resulted in a dose-dependent increase in 24-hr urinary nitrate excretion and in increased salivary nitrate and nitrite levels. The mean log variant frequency of peripheral lymphocytes was significantly higher in the medium well water exposure group than in the low and medium tap water exposure groups. An inverse correlation between peripheral lymphocyte labeling index and nitrate concentration of drinking water was observed. Analysis of N-nitrosamine in the urine of 22 subjects by gas chromatography-mass spectrometry revealed the presence of N-nitrosopyrrolidine in 18 subjects. Analysis of the mutagenicity of well water samples showed that a small number of the well water samples were mutagenic in the Ames Salmonella typhimurium test after concentration over XAD-2 resin. In conclusion, consumption of drinking water, especially well water, with high nitrate levels can imply a genotoxic risk for humans as indicated by increased HPRT variant frequencies and by endogenous formation of carcinogenic N-nitroso compounds from nitrate-derived nitrite

    Adipocyte ATP-binding cassette G1 promotes triglyceride storage, fat mass growth, and human obesity

    Get PDF
    The role of ATP-binding Cassette G1 (ABCG1) transporter in human pathophysiology is still largely unknown. Indeed, beyond its role in mediating free cholesterol efflux to HDL, ABCG1 transporter equally promotes lipid accumulation in a triglyceride (TG)-rich environment through regulation of the bioavailability of Lipoprotein Lipase (LPL).As both ABCG1 and LPL are expressed in adipose tissue, we hypothesize that ABCG1 is implicated in adipocyte TG storage and could be then a major actor in adipose tissue fat accumulation.Silencing of Abcg1 expression by RNAi in 3T3-L1 preadipocytes compromised LPL-dependent TG accumulation during initial phase of differentiation. Generation of stable Abcg1 Knockdown 3T3-L1 adipocytes revealed that Abcg1 deficiency reduces TG storage and diminishes lipid droplet size through inhibition of Pparγ expression. Strikingly, local inhibition of adipocyte Abcg1 in adipose tissue from mice fed a high fat diet led to a rapid decrease of adiposity and weight gain. Analysis of two frequent ABCG1 SNPs (rs1893590 (A/C) and rs1378577 (T/G)) in morbidly obese individuals indicated that elevated ABCG1 expression in adipose tissue was associated with an increased PPARγ expression and adiposity concomitant to an increased fat mass and BMI (haplotype AT&gt;GC). The critical role of ABCG1 regarding obesity was further confirmed in independent populations of severe obese and diabetic obese individuals.For the first time, this study identifies a major role of adipocyte ABCG1 in adiposity and fat mass growth and suggests that adipose ABCG1 might represent a potential therapeutic target in obesity

    Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects

    Get PDF
    Background: Gut microbiota-derived short-chain fatty acids (SCFAs) have been associated with beneficial metabolic effects. However, the direct effect of oral butyrate on metabolic parameters in humans has never been studied. In this first in men pilot study, we thus treated both lean and metabolic syndrome male subjects with oral sodium butyrate and investigated the effect on metabolism. Methods: Healthy lean males (n = 9) and metabolic syndrome males (n = 10) were treated with oral 4 g of sodium butyrate daily for 4 weeks. Before and after treatment, insulin sensitivity was determined by a two-step hyperinsulinemic euglycemic clamp using [6,6-2H2]-glucose. Brown adipose tissue (BAT) uptake of glucose was visualized using 18F-FDG PET-CT. Fecal SCFA and bile acid concentrations as well as microbiota composition were determined before and after treatment. Results: Oral butyrate had no effect on plasma and fecal butyrate levels after treatment, but did alter other SCFAs in both plasma and feces. Moreover, only in healthy lean subjects a significant improvement was observed in both peripheral (median Rd: from 71 to 82 μmol/kg min, p < 0.05) and hepatic insulin sensitivity (EGP suppression from 75 to 82% p < 0.05). Although BAT activity was significantly higher at baseline in lean (SUVmax: 12.4 ± 1.8) compared with metabolic syndrome subjects (SUVmax: 0.3 ± 0.8, p < 0.01), no significant effect following butyrate treatment on BAT was observed in either group (SUVmax lean to 13.3 ± 2.4 versus metabolic syndrome subjects to 1.2 ± 4.1). Conclusions: Oral butyrate treatment beneficially affects glucose metabolism in lean but not metabolic syndrome subjects, presumably due to an altered SCFA handling in insulin-resistant subjects. Although preliminary, these first in men findings argue against oral butyrate supplementation as treatment for glucose regulation in human subjects with type 2 diabetes mellitus

    Reduced CETP glycosylation and activity in patients with homozygous B4GALT1 mutations

    Get PDF
    The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying the effects of defective glycosylation on plasma lipids in patients with B4GALT1-CDG, caused by a mutation in B4GALT1 with defective N-linked glycosylation. We studied plasma lipids, cholesteryl ester transfer protein (CETP) glyco-isoforms with isoelectric focusing followed by a western blot and CETP activity in three known B4GALT1-CDG patients and compared them with 11 age- and gender-matched, healthy controls. B4GALT1-CDG patients have significantly lowered non-high density lipoprotein cholesterol (HDL-c) and total cholesterol to HDL-c ratio compared with controls and larger HDL particles. Plasma CETP was hypoglycosylated and less active in B4GALT1-CDG patients compared to matched controls. Our study provides insight into the role of protein glycosylation in human lipoprotein homeostasis. The hypogalactosylated, hypo-active CETP found in patients with B4GALT1-CDG indicates a role of protein galactosylation in regulating plasma HDL and LDL. Patients with B4GALT1-CDG have large HDL particles probably due to hypogalactosylated, hypo-active CETP

    Solid-Phase Microextraction and the Human Fecal VOC Metabolome

    Get PDF
    The diagnostic potential and health implications of volatile organic compounds (VOCs) present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME) has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and analysis. However, we hypothesized that the multifarious nature of metabolites present in human feces dictates the use of several diverse SPME fiber coatings for more comprehensive metabolomic coverage. We report here an evaluation of eight different commercially available SPME fibers, in combination with both GC-MS and GC-FID, and identify the 50/30 µm CAR-DVB-PDMS, 85 µm CAR-PDMS, 65 µm DVB-PDMS, 7 µm PDMS, and 60 µm PEG SPME fibers as a minimal set of fibers appropriate for human fecal VOC metabolomics, collectively isolating approximately 90% of the total metabolites obtained when using all eight fibers. We also evaluate the effect of extraction duration on metabolite isolation and illustrate that ex vivo enteric microbial fermentation has no effect on metabolite composition during prolonged extractions if the SPME is performed as described herein

    Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition

    Get PDF
    The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as gamma-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.Peer reviewe
    • …
    corecore