28 research outputs found

    Imaging the P‐Wave Velocity Structure of Arctic Subsea Permafrost Using Laplace‐Domain Full‐Waveform Inversion

    Get PDF
    Climate change in the Arctic has recently become a major scientific issue, and detailed information on the degradation of subsea permafrost on continental shelves in the Arctic is critical for understanding the major cause and effects of global warming, especially the release of greenhouse gases. The subsea permafrost at shallow depths beneath the Arctic continental shelves has significantly higher P‐wave velocities than the surrounding sediments. The distribution of subsea permafrost on Arctic continental shelves has been studied since the 1970s using seismic refraction methods. With seismic refraction data, the seismic velocity and the depth of the upper boundary of subsea permafrost can be determined. However, it is difficult to identify the lower boundary and the internal shape of permafrost. Here, we present two‐dimensional P‐wave velocity models of the continental shelf in the Beaufort Sea by applying the Laplace‐domain full‐waveform inversion method to acquired multichannel seismic reflection data. With the inverted P‐wave velocity model, we identify anomalous high seismic velocities that originated from the subsea permafrost. Information on the two‐dimensional distribution of subsea permafrost on the Arctic continental shelf area, including the upper and lower bounds of subsea permafrost, are presented. Also, the two‐dimensional P‐wave velocity model allows us to estimate the thawing pattern and the shape of subsea permafrost structures. Our proposed P‐wave velocity models were verified by comparison with the previous distribution map of subsea permafrost from seismic refraction analyses, geothermal modeling, and well‐log data

    Sensitivity of the carbon cycle in the Arctic to climate change

    Get PDF
    The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a comprehensive review of the status of the contemporary carbon cycle of the Arctic and its response to climate change. This review is designed to clarify key uncertainties an vulnerabilities in the response of the carbon cycle of the Arctic to ongoing climatic change. While it is clear that there are substantial stocks of carbon in the Arctic, there are also significant uncertainties associated with the magnitude of organic matter stocks contained in permafrost and the storage of methane hydrates beneath both subterranean and submerged permafrost of the Arctic. In the context of the global carbon cycle, this review demonstrates that the Arctic plays an important role in the global dynamics of both CO2 and CH4. Studies suggest that the Arctic has been a sink for atmospheric CO2 of between 0 and 0.8 Pg C/yr in recent decades, which is between 0% and 25% of the global net land/ocean flux during the 1990s. The Arctic is a substantial source of CH4 to the atmosphere (between 32 and 112 Tg CH4/yr), primarily because of the large area of wetlands throughout the region. Analyses to date indicate that the sensitivity of the carbon cycle of the Arctic during the remainder of the 21st century is highly uncertain. To improve the capability to assess the sensitivity of the carbon cycle of the Arctic to projected climate change, we recommend that (1) integrated regional studies be conducted to link observations of carbon dynamics to the processes that are likely to influence those dynamics, and (2) the understanding gained from these integrated studies be incorporated into both uncoupled and fully coupled carbon–climate modeling efforts

    Effectiveness of preoperative staging in rectal cancer: digital rectal examination, endoluminal ultrasound or magnetic resonance imaging?

    Get PDF
    In rectal cancer, preoperative staging should identify early tumours suitable for treatment by surgery alone and locally advanced tumours that require therapy to induce tumour regression from the potential resection margin. Currently, local staging can be performed by digital rectal examination (DRE), endoluminal ultrasound (EUS) or magnetic resonance imaging (MRI). Each staging method was compared for clinical benefit and cost-effectiveness. The accuracy of high-resolution MRI, DRE and EUS in identifying favourable, unfavourable and locally advanced rectal carcinomas in 98 patients undergoing total mesorectal excision was compared prospectively against the resection specimen pathological as the gold standard. Agreement between each staging modality with pathology assessment of tumour favourability was calculated with the chance-corrected agreement given as the kappa statistic, based on marginal homogenised data. Differences in effectiveness of the staging modalities were compared with differences in costs of the staging modalities to generate cost effectiveness ratios. Agreement between staging and histologic assessment of tumour favourability was 94% for MRI (kappa=0.81, s.e.=0.05; kappa(W)=0.83), compared with very poor agreements of 65% for DRE (kappa=0.08, s.e.=0.068, kappa(W)=0.16) and 69% for EUS (kappa=0.17, s.e.=0.065, kappa(W)=0.17). The resource benefits resulting from the use of MRI rather than DRE was 67164 UK pounds and 92244 UK pounds when MRI was used rather than EUS. Magnetic resonance imaging dominated both DRE and EUS on cost and clinical effectiveness by selecting appropriate patients for neoadjuvant therapy and justifies its use for local staging of rectal cancer patients

    DEVELOPMENTS IN GEOPHYSICAL WELL LOG ACQUISITION AND INTERPRETATION IN GAS HYDRATE SATURATED RESERVOIRS

    No full text
    There has been a dramatic increase in both the amount and type of geophysical well log data acquired in gas hydrate saturated rocks. Data has been acquired in both offshore and Arctic environments; its availability has shed light on the applicability of current tools and the potential usefulness of recently developed and developing technologies. Some of the more interesting areas of interest are related to the usefulness of nuclear elemental spectroscopy data and the comparison of thermal and epithermal neutron porosity measurements, the measurement of in-situ permeability, the interpretation of electrical borehole image and borehole sonic data. A key parameter for reservoir characterization and simulation is formation permeability. A reasonable understanding of this property is key to the development of future gas hydrate production. Typical applications of borehole image data are an appreciation of a reservoir’s geological environment. In hydrate saturated reservoirs, borehole images can also be used to assist in the understanding of the gas migratory path to the hydrate bearing formation. This paper presents a review of some of the current state of the art geophysical log measurements and their application in hydrate saturated reservoirs..Non UBCUnreviewe

    OVERVIEW OF REGIONAL OPPORTUNITIES FOR GEOLOGICAL SEQUESTRATION OF CO2 AS GAS HYDRATE IN CANADA

    No full text
    The responsible management and reduction of carbon dioxide (CO2) emissions to the atmosphere requires consideration of alternative options for disposal and long-term sequestration of CO2 generated at hydrocarbon-fueled power plants and large industrial sources. A number of “conventional” options for geological sequestration of CO2 are currently being evaluated worldwide, including disposal of CO2 in depleted oil and gas reservoirs, in deep saline aquifers, and in unrecoverable coal beds, typically in gaseous or liquid form or as a supercritical fluid. Although these geological settings may constitute the most readily accessible sites for immediate utilization, it is unlikely that they represent sufficient cumulative storage capacity to keep pace with global CO2 production and future disposal requirements. In addition, the requirement for long-term maintenance of CO2 sequestered in fluid form, raises concerns regarding the possible mobility of disposed CO2 over the longer term. The Geological Survey of Canada (GSC) has investigated potential opportunities to sequester CO2 in solid form in Canadian geologic reservoirs having pressure and temperature conditions suitable for the formation and long-term stability of CO2 hydrate. Initial screening of candidate reservoirs has identified substantial potentials for CO2 sequestration as gas hydrate in extensive porous sandstone and limestone formations beneath portions of the Canadian Great Lakes, and in areas of the Mackenzie-Beaufort hydrocarbon development region in northern Canada. A significant but less robust capacity has been identified in the oil and gas production regions of northeastern Alberta.Non UBCUnreviewe

    Holocene environmental history of thermokarst lakes on Richards Island, Northwest Territories, Canada: Thecamoebians as paleolimnological indicators

    No full text
    Richards Island, Northwest Territories, Canada, is characterized by thermokarst lakes which record Holocene limnological change. This study is the first report of thecamoebian assemblages and continuous annual lake water temperatures from these Arctic lakes. Ecological environments on Richards Island are influenced by a climatic gradient resulting from the contrasting influences of the cold Beaufort Sea to the north and the warm waters of the Mackenzie Delta to the east and west. This climatic gradient in turn influences modern thecamoebian assemblages, and is an indication of the complexity involved in interpreting past conditions from core material in this area. Population abundance and species diversity of thecamoebian assemblages on Richards Island are not significantly different from those reported from temperate and semi-tropical latitudes. However, certain assemblage characteristics, such as large and coarse agglutinated tests, dominance of assemblages by one or two species and low morphological variation are interpreted to be diagnostic of Arctic conditions. Thecamoebian assemblages in core material from the area indicate that the local paleolimnological conditions may have changed within the last 3 ka, and this is unrecorded in previously reported pollen data. Paleoenvironmental interpretations in a permafrost landscape have to take into account morphological instability of thermokarst lakes, which can be the cause of paleolimnological and consequently faunal change. In this area ecosystem development is clearly related to geomorphology and local climatic effects and is not exclusively controlled by regional climate change

    Acoustic impedance inversion and seismic reflection continuity analysis for delineating gas hydrate resources near the Mallik research sites, Mackenzie Delta, Northwest Territories, Canada

    No full text
    We combine acoustic impedance inversion of 3D seismic data, log-to-seismic correlation, and seismic attribute analyses to delineate gas-hydrate zones at the Mallik site, Mackenzie Delta, Northwest Territories, Canada. Well-log data define three distinct hydrate zones over a depth range of 890–1100 m. Synthetic seismic modeling indicates the base of the two deeper hydrate zones are prominent reflectors. The uppermost gas-hydrate zone correlates to seismic data with a lower degree of confidence. The extent and geometry of the two lower hydrate zones suggest that local geology plays a significant role in the lateral and vertical distribution of gas hydrate at Mallik. The reliability of the hydrate concentrations calculated from the inverted impedances is qualified by the match between original and synthetic seismic data to produce confidence maps for the two lower gas-hydrate-bearing intervals. A total in-place volume estimate of solid gas hydrate for an area of 1.44 km2 around well 5L-38 yields a value of approximately 45 equivalently, 6.6 of gas. We further qualify our mapping of gas hydrates by some amount of continuous resource, defined as lateral continuity measured by seismic attribute similarity and sand-dominated rock. Using these attributes, the continuous amount of hydrate at Mallik is about half the in-place volume. Else-where within the 3D seismic cube, the seismic impedance inversion yields evidence of potential gas-hydrate deposits near wells A-06 and P-59 at levels near the predicted base of the hydrate stability zone

    Numerical simulation studies of gas production scenarios from hydrate accumulations at the Mallik site

    No full text
    The Mallik site represents an onshore permafrost-associated gas hydrate accumulation in the Mackenzie Delta, Northwest Territories, Canada. An 1150 m deep gas hydrate research well was drilled at the site in 1998. The objective of this study is the analysis of various gas production scenarios from several gas-hydrate-bearing zones at the Mallik site. The TOUGH2 general-purpose simulator with the EOSHYDR2 module were used for the analysis. EOSHYDR2 is designed to model the non-isothermal CH 4 (methane) release, phase behavior and flow under conditions typical of methane-hydrate deposits by solving the coupled equations of mass and heat balance, and can describe any combination of gas hydrate dissociation mechanisms. Numerical simulations indicated that significant gas hydrate production at the Mallik site was possible by drawing down the pressure on a thin free-gas zone at the base of the hydrate stability field. Gas hydrate zones with underlying aquifers yielded significant gas production entirely from dissociated gas hydrate, but large amounts of produced water. Lithologically isolated gas-hydrate-bearing reservoirs with no underlying free gas or water zones, and gas-hydrate saturations of at least 50% were also studied. In these cases, it was assumed that thermal stimulation by circulating hot water in the well was the method used to induce dissociation. Sensitivity studies indicated that the methane release from the hydrate accumulations increases with gas-hydrate saturation, the initial formation temperature, the temperature of the circulating water in the well, and the formation thermal conductivity. Methane production appears to be less sensitive to the rock and hydrate specific heat and permeability of the formation
    corecore