1,441 research outputs found

    Transverse Lattice

    Get PDF
    The transverse lattice approach to non-perturbative light-front hamiltonian QCD is described. Preliminary results on the pi-rho system are presented, at fixed DLCQ and Tamm-Dancoff cut-offs. A renormalised, approximately Lorentz covariant light-front hamiltonian is found to leading order of the colour-dielectric expansion, compatible with a massless pion. The pi light-front wavefunction is compared with experiment. Exclusive processes agree reasonably well, given the approximations, but inclusive processes, sensitive to higher Fock state structure, still exhibit large cut-off artifacts.Comment: 11 pages, Invited talk at Xth International Light-Cone Meeting on Non-Perturbative QCD and Hadron Phenomenology, Heidelberg 12-17 June 200

    A (1+1)-Dimensional Reduced Model of Mesons

    Full text link
    We propose an extension of 't Hooft's large-NcN_c light-front QCD in two dimensions to include helicity and physical gluon degrees of freedom, modelled on a classical dimensional reduction of four dimensional QCD. A non-perturbative renormalisation of the infinite set of coupled integral equations describing boundstates is performed. These equations are then solved, both analytically in a phase space wavefunction approximation and numerically by discretising momenta, for (hybrid) meson masses and (polarized) parton structure functions.Comment: LaTex 13 pages; 2 figures, uuencoded file (PostScript

    Light-cone QCD on the lattice

    Get PDF
    Ideas and recent results for light-front Hamiltonian quantisation of lattice gauge theories.Comment: LATTICE99(Plenary), 5 pages, 3 figure

    A Study of Heavy-Light Mesons on the Transverse Lattice

    Get PDF
    We present results from a study of meson spectra and structure in the limit where one quark is infinitely heavy. The calculations, based on the framework of light-front QCD formulated on a transverse lattice, are the first non-perturbative studies of B-mesons in light-front QCD. We calculate the Isgur-Wise form factor, light-cone distribution amplitude, the heavy-quark parton distribution function and the leptonic decay constant of B-mesons.Comment: 5 pages, 3 figures, Revtex, corrected typos, added references, included moment

    Matrix Theories from Reduced SU(N) Yang-Mills with Adjoint Fermions

    Get PDF
    We consider a dimensional reduction of 3+1 dimensional SU(N) Yang-Mills theory coupled to adjoint fermions to obtain a class of 1+1 dimensional matrix field theories. We derive the quantized light-cone Hamiltonian in the light-cone gauge A_- = 0 and large-N limit, and then solve for the masses, wavefunctions and structure functions of the color singlet ``meson-like'' and ``baryon-like'' boundstates. Among the states we study are many massless string-like states that can be solved for exactly.Comment: 13 pages, Revtex, one PS figur

    The Relativistic Bound State Problem in QCD: Transverse Lattice Methods

    Get PDF
    The formalism for describing hadrons using a light-cone Hamiltonian of SU(N) gauge theory on a coarse transverse lattice is reviewed. Physical gauge degrees of freedom are represented by disordered flux fields on the links of the lattice. A renormalised light-cone Hamiltonian is obtained by making a colour-dielectric expansion for the link-field interactions. Parameters in the Hamiltonian are renormalised non-perturbatively by seeking regions in parameter space with enhanced Lorentz symmetry. In the case of pure gauge theories to lowest non-trivial order of the colour-dielectric expansion, this is sufficient to determine accurately all parameters in the large-N limit. We summarize results from applications to glueballs. After quarks are added, the Hamiltonian and Hilbert space are expanded in both dynamical fermion and link fields. Lorentz and chiral symmetry are not sufficient to accurately determine all parameters to lowest non-trivial order of these expansions. However, Lorentz symmetry and one phenomenological input, a chiral symmetry breaking scale, are enough to fix all parameters unambiguously. Applications to light-light and heavy-light mesons are described.Comment: 55 pp, revised version, to appear in `Progress in Particle and Nuclear Physics

    A derivation of Regge trajectories in large-N transverse lattice QCD

    Get PDF
    Large-N QCD is analysed in light-front coordinates with a transverse lattice at strong coupling. The general formalism can be looked up on as a d+n expansion with a stack of d-dimensional hyperplanes uniformly spaced in n transverse dimensions. It can arise by application of the renormalisation group transformations only in the transverse directions. At leading order in strong coupling, the gauge field dynamics reduces to the constraint that only colour singlet states can jump between the hyperplanes. With d=2, n=2 and large-N, the leading order strong coupling results are simple renormalisations of those for the 't Hooft model. The meson spectrum lies on a set of parallel trajectories labeled by spin. This is the first derivation of the widely anticipated Regge trajectories in a regulated systematic expansion in QCD.Comment: Lattice 2000 (spectrum), 5 pages, to appear in the proceeding

    Glueballs from 1+1 Dimensional Gauge Theories with Transverse Degrees of Freedom

    Get PDF
    We study 1+11+1-dimensional SU(N)SU(N) gauge theories with adjoint scalar matter representations, based on a dimensional truncation of 2+12+1 and 3+13+1-dimensional pure QCD, which approximate the dynamics of transversely polarized gluons. The glueballs are investigated non-perturbatively using light-front quantisation, detailed spectra and wavefunctions being obtained for the large-NN limit. In general there is some qualitative agreement of the spectra with lattice Monte Carlo data from the higher dimensional QCD. From the light-front wavefunctions we calculate (polarized) structure functions and interpret the gluon and spin content of glueballs. We discuss the phase structure of the reduced theories in relation to matrix models for relativistic non-critical strings.Comment: To appear in Nucl. Phys. B; some small clarifications and 3 references adde

    From polymers to quantum gravity: triple-scaling in rectangular matrix models

    Full text link
    Rectangular N×MN\times M matrix models can be solved in several qualitatively distinct large NN limits, since two independent parameters govern the size of the matrix. Regarded as models of random surfaces, these matrix models interpolate between branched polymer behaviour and two-dimensional quantum gravity. We solve such models in a `triple-scaling' regime in this paper, with NN and MM becoming large independently. A correspondence between phase transitions and singularities of mappings from R2{\bf R}^2 to R2{\bf R}^2 is indicated. At different critical points, the scaling behavior is determined by: i) two decoupled ordinary differential equations; ii) an ordinary differential equation and a finite difference equation; or iii) two coupled partial differential equations. The Painlev\'e II equation arises (in conjunction with a difference equation) at a point associated with branched polymers. For critical points described by partial differential equations, there are dual weak-coupling/strong-coupling expansions. It is conjectured that the new physics is related to microscopic topology fluctuations.Comment: 29 page

    A Mean Field Approximation to the Worldsheet Model of Planar phi^3 Field Theory

    Get PDF
    We develop an approximation scheme for our worldsheet model of the sum of planar diagrams based on mean field theory. At finite coupling the mean field equations show a weak coupling solution that resembles the perturbative diagrams and a strong coupling solution that seems to represent a tensionless soup of field quanta. With a certain amount of fine-tuning, we find a solution of the mean field equations that seems to support string formation.Comment: 27 pages, 10 figures, typos corrected, appendix on slowly varying mean fields adde
    corecore