335 research outputs found

    The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques

    Get PDF
    Aims The activation of cannabinoid receptor type 2 (CB2)-mediated pathways might represent a promising anti-atherosclerotic treatment. Here, we investigated the expression of the endocannabinoid system in human carotid plaques and the impact of CB2 pharmacological activation on markers of plaque vulnerability in vivo and in vitro. Methods and results The study was conducted using all available residual human carotid tissues (upstream and downstream the blood flow) from our cohort of patients symptomatic (n = 13) or asymptomatic (n = 27) for ischaemic stroke. Intraplaque levels of 2-arachidonoylglycerol, anandamide N-arachidonoylethanolamine, N-palmitoylethanolamine, N-oleoylethanolamine, and their degrading enzymes (fatty acid amide hydrolase and monoacylglycerol lipase) were not different in human plaque portions. In the majority of human samples, CB1 (both mRNA and protein levels) was undetectable. In downstream symptomatic plaques, CB2 protein expression was reduced when compared with asymptomatic patients. In these portions, CB2 levels were inversely correlated (r = −0.4008, P = 0.0170) with matrix metalloprotease (MMP)-9 content and positively (r = 0.3997, P = 0.0174) with collagen. In mouse plaques, CB2 co-localized with neutrophils and MMP-9. Treatment with the selective CB2 agonist JWH-133 was associated with the reduction in MMP-9 content in aortic root and carotid plaques. In vitro, pre-incubation with JWH-133 reduced tumour necrosis factor (TNF)-α-mediated release of MMP-9. This effect was associated with the reduction in TNF-α-induced ERK1/2 phosphorylation in human neutrophils. Conclusion Cannabinoid receptor type 2 receptor is down-regulated in unstable human carotid plaques. Since CB2 activation prevents neutrophil release of MMP-9 in vivo and in vitro, this treatment strategy might selectively reduce carotid vulnerability in human

    Transcriptomic Analysis of Host Immune and Cell Death Responses Associated with the Influenza A Virus PB1-F2 Protein

    Get PDF
    Airway inflammation plays a major role in the pathogenesis of influenza viruses and can lead to a fatal outcome. One of the challenging objectives in the field of influenza research is the identification of the molecular bases associated to the immunopathological disorders developed during infection. While its precise function in the virus cycle is still unclear, the viral protein PB1-F2 is proposed to exert a deleterious activity within the infected host. Using an engineered recombinant virus unable to express PB1-F2 and its wild-type homolog, we analyzed and compared the pathogenicity and host response developed by the two viruses in a mouse model. We confirmed that the deletion of PB1-F2 renders the virus less virulent. The global transcriptomic analyses of the infected lungs revealed a potent impact of PB1-F2 on the response developed by the host. Thus, after two days post-infection, PB1-F2 invalidation severely decreased the number of genes activated by the host. PB1-F2 expression induced an increase in the number and level of expression of activated genes linked to cell death, inflammatory response and neutrophil chemotaxis. When generating interactive gene networks specific to PB1-F2, we identified IFN-γ as a central regulator of PB1-F2-regulated genes. The enhanced cell death of airway-recruited leukocytes was evidenced using an apoptosis assay, confirming the pro-apoptotic properties of PB1-F2. Using a NF-kB luciferase adenoviral vector, we were able to quantify in vivo the implication of NF-kB in the inflammation mediated by the influenza virus infection; we found that PB1-F2 expression intensifies the NF-kB activity. Finally, we quantified the neutrophil recruitment within the airways, and showed that this type of leukocyte is more abundant during the infection of the wild-type virus. Collectively, these data demonstrate that PB1-F2 strongly influences the early host response during IAV infection and provides new insights into the mechanisms by which PB1-F2 mediates virulence

    Adherence to antibiotic treatment guidelines and outcomes in the hospitalized elderly with different types of pneumonia

    Get PDF
    Background: Few studies evaluated the clinical outcomes of Community Acquired Pneumonia (CAP), Hospital-Acquired Pneumonia (HAP) and Health Care-Associated Pneumonia (HCAP) in relation to the adherence of antibiotic treatment to the guidelines of the Infectious Diseases Society of America (IDSA) and the American Thoracic Society (ATS) in hospitalized elderly people (65 years or older). Methods: Data were obtained from REPOSI, a prospective registry held in 87 Italian internal medicine and geriatric wards. Patients with a diagnosis of pneumonia (ICD-9 480-487) or prescribed with an antibiotic for pneumonia as indication were selected. The empirical antibiotic regimen was defined to be adherent to guidelines if concordant with the treatment regimens recommended by IDSA/ATS for CAP, HAP, and HCAP. Outcomes were assessed by logistic regression models. Results: A diagnosis of pneumonia was made in 317 patients. Only 38.8% of them received an empirical antibiotic regimen that was adherent to guidelines. However, no significant association was found between adherence to guidelines and outcomes. Having HAP, older age, and higher CIRS severity index were the main factors associated with in-hospital mortality. Conclusions: The adherence to antibiotic treatment guidelines was poor, particularly for HAP and HCAP, suggesting the need for more adherence to the optimal management of antibiotics in the elderly with pneumonia

    Tissue injury in neutrophilic inflammation

    No full text
    • …
    corecore