1,469 research outputs found

    Transverse motions in CSOs?

    Full text link
    The measurement of proper motions in CSOs is a powerful tool to determine the dynamical evolution of the newly born extragalactic radio sources. We observed 3 CSOs with the VLBA in 2004 and in 2006 to monitor changes in their structure and measure the separation velocity of the hot spots. It is important to increase the size of the samples of CSOs with measured expansion velocity to test the existance of frustrated objects, and put stringent constraints on the current models. We found for all the three objects observed a transverse motion of the hotspots, and we suggest as the more likey explanation a precession in the jet axis. This behaviour likely inhibits or at least slows down the radio source growth because the head of the hotspot continuously hits new regions of the ISM. Therefore these radio sources may represent an old population of GPS/CSOs.Comment: 4 pages, 3 figures. Accepted for publication in Astronomische Nachrichte

    High Frequency Peakers: young radio sources or flaring blazars?

    Get PDF
    We present new, simultaneous, multifrequency observations of 45 out of the 55 candidate High Frequency Peakers (HFP) selected by Dallacasa et al. (2000), carried out 3 to 4 years after a first set of observations. Our sub-sample consists of 10 galaxies, 28 stellar objects (``quasars'') and 7 unidentified sources. Both sets of observations are sensitive enough to allow the detection of variability at the 10% level or lower. While galaxies do not show significant variability, most quasars do. Seven of them no longer show the convex spectrum which is the defining property of Gigahertz Peaked Spectrum (GPS)/HFP sources and are interpreted as blazars caught by Dallacasa et al. (2000) during a flare, when a highly self-absorbed component dominated the emission. In general, the variability properties (amplitude, timescales, correlation between peak luminosity and peak frequency of the flaring component) of the quasar sub-sample resemble those of blazars. We thus conclude that most HFP candidates identified with quasars may well be flaring blazars.Comment: 20 pages, 18 figures, accepted for publication in Astronomy & Astrophysic

    Physical properties in young radio sources. VLBA observations of high frequency peaking radio sources

    Full text link
    Multifrequency Very Long Baseline Array (VLBA) observations were performed to study the radio morphology and the synchrotron spectra of four high frequency peaking radio sources. They are resolved in several compact components and the radio emission is dominated by the hotspots/lobes. The core region is unambiguously detected in J1335+5844 and J1735+5049. The spectra of the main source components peak above 3 GHz. Assuming that the spectral peak is produced by synchrotron self-absorption, we estimate the magnetic field directly from observable quantities and in half of the components it agrees with the equipartition field, while in the others the difference exceeds an order of magnitude. By comparing the physical properties of the targets with those of larger objects we found that the luminosity increases with the linear size for sources smaller than a few kpc, while it decreases for larger objects. The asymmetric sources J1335+5844 and J1735+5049 suggest that the ambient medium is inhomogeneous and is able to influence the evolution of the radio emission even during its first stages. The core luminosity increases with the linear size for sources up to a few kpc, while it seems constant for larger sources suggesting an evolution independent from the source total luminosity.Comment: 16 pages, 10 figures, accepted for publication in MNRA

    High Frequency Peakers: The Faint Sample

    Full text link
    We present a sample of sources with convex radio spectra peaking at frequencies above a few GHz, known as "High Frequency Peakers" (HFPs). A "bright" sample with a flux density limit of 300 mJy at 5 GHz has been presented by Dallacasa et al. (2000). Here we present the "faint" sample with flux density between 50 and 300 mJy at 5GHz, restricted to the area around the North Galactic Cap, where the FIRST catalogue is available. The candidates have been observed with the VLA at several frequencies ranging from 1.4 to 22 GHz, in order to derive a simultaneous radio spectrum. The final list of confirmed HFP sources consists of 61 objects.Comment: 3 pages. Accepted for publication in Astronomische Nachrichte

    VLBA images of High Frequency Peakers

    Full text link
    We propose a morphological classification based on the parsec scale structure of fifty-one High Frequency Peakers (HFPs) from the ``bright'' HFP sample. VLBA images at two adjacent frequencies (chosen among 8.4, 15.3, 22.2 and 43.2 GHz) have been used to investigate the morphological properties of the HFPs in the optically thin part of their spectrum. We confirm that there is quite a clear distinction between the pc-scale radio structure of galaxies and quasars: the 78% of the galaxies show a ``Double/Triple'' morphology, typical of Compact Symmetric Objects (CSOs), while the 87% of the quasars are characterised by Core-Jet or unresolved structure. This suggests that most HFP candidates identified with quasars are likely blazar objects in which a flaring self-absorbed component at the jet base was outshining the remainder of the source at the time of the selection based on the spectral shape. Among the sources classified as CSOs or candidates it is possible to find extremely young radio sources with ages of about 100 years or even less.Comment: 21 pages, 8 figures; accepted for pubblication in A&A. Paper version with full resolution images is available at http://www.ira.inaf.it/~ddallaca/orienti.p

    Proper motion and apparent contraction in J0650+6001

    Full text link
    We present a multi-epoch and multi-frequency VLBI study of the compact radio source J0650+6001. In VLBI images the source is resolved into three components. The central component shows a flat spectrum, suggesting the presence of the core, while the two outer regions, with a steeper spectral index, display a highly asymmetric flux density. The time baseline of the observations considered to derive the source expansion covers about 15 years. During this time interval, the distance between the two outer components has increased by 0.28+/-0.13 mas, that corresponds to an apparent separation velocity of 0.39c+/-0.18c and a kinematic age of 360+/-170 years. On the other hand, a multi-epoch monitoring of the separation between the central and the southern components points out an apparent contraction of about 0.29+/-0.02 mas, corresponding to an apparent contraction velocity of 0.37c+/-0.02c. Assuming that the radio structure is intrinsically symmetric, the high flux density ratio between the outer components can be explained in terms of Doppler beaming effects where the mildly relativistic jets are separating with an intrinsic velocity of 0.43c+/-0.04c at an angle between 12 and 28 degrees to the line of sight. In this context, the apparent contraction may be interpreted as a knot in the jet that is moving towards the southern component with an intrinsic velocity of 0.66c+/-0.03c, and its flux density is boosted by a Doppler factor of 2.0.Comment: 7 pages, 5 pages. Accepted for publication in MNRA

    Weak CSS Sources from FIRST Survey

    Get PDF
    We report early results of an observational campaign targeted on a sample of compact steep spectrum sources selected from the FIRST survey which are significantly weaker than those investigated before. The selection criteria and procedure are given in detail. We present here an assortment of MERLIN and VLBI observations and make some general comments based on the morphologies of the sources presented.Comment: A contribution to The Third Workshop on GHz-Peaked Spectrum and Compact Steep Spectrum Radio Sources, Kerastari, Greece, May 28-31, 2002. Refereed and accepted by Publications of the Astronomical Society of Australia. Final version copyedited by PASA Edito

    A giant radio halo in the massive and merging cluster Abell 1351

    Full text link
    We report on the detection of diffuse radio emission in the X-ray luminous and massive galaxy cluster A1351 (z=0.322) using archival Very Large Array data at 1.4 GHz. Given its central location, morphology, and Mpc-scale extent, we classify the diffuse source as a giant radio halo. X-ray and weak lensing studies show A1351 to be a system undergoing a major merger. The halo is associated with the most massive substructure. The presence of this source is explained assuming that merger-driven turbulence may re-accelerate high-energy particles in the intracluster medium and generate diffuse radio emission on the cluster scale. The position of A1351 in the logP1.4GHz_{1.4 GHz} - logLX_{X} plane is consistent with that of all other radio-halo clusters known to date, supporting a causal connection between the unrelaxed dynamical state of massive (>1015M⊙>10^{15} M_{\odot}) clusters and the presence of giant radio halos.Comment: 4 pages, 3 figures, proof corrections include
    • …
    corecore